Utilizing machine learning algorithm in predicting the power conversion efficiency limit of a monolithically perovskites/silicon tandem structure

M. Ganoub, O. Al-Saban, S. Abdellatif, K. Kirah, H. A. Ghali
{"title":"Utilizing machine learning algorithm in predicting the power conversion efficiency limit of a monolithically perovskites/silicon tandem structure","authors":"M. Ganoub, O. Al-Saban, S. Abdellatif, K. Kirah, H. A. Ghali","doi":"10.15407/spqeo26.01.114","DOIUrl":null,"url":null,"abstract":"Tandem structures have been introduced to the photovoltaics (PV) market to boost power conversion efficiency (PCE). Single-junction cells’ PCE, either in a homojunction or heterojunction format, are clipped to a theoretical limit associated with the absorbing material bandgap. Scaling up the single-junction cells to a multi-junction tandem structure penetrates such limits. One of the promising tandem structures is the perovskite over silicon topology. Si junction is utilized as a counter bare cell with perovskites layer above, under applying the bandgap engineering aspects. Herein, we adopt BaTiO 3 /CsPbCl 3 /MAPbBr 3 /CH 3 NH 3 PbI 3 /c-Si tandem structure to be investigated. In tandem PVs, various input parameters can be tuned to maximize PCE, leading to a massive increase in the input combinations. Such a vast dataset directly reflects the computational requirements needed to simulate the wide range of combinations and the computational time. In this study, we seed our random-forest machine learning model with the 3×10 6 points’ dataset with our optoelectronic numerical model in SCAPS. The machine learning could estimate the maximum PCE limit of the proposed tandem structure at around 37.8%, which is more than double the bare Si-cell reported by 18%.","PeriodicalId":21598,"journal":{"name":"Semiconductor physics, quantum electronics and optoelectronics","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor physics, quantum electronics and optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/spqeo26.01.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tandem structures have been introduced to the photovoltaics (PV) market to boost power conversion efficiency (PCE). Single-junction cells’ PCE, either in a homojunction or heterojunction format, are clipped to a theoretical limit associated with the absorbing material bandgap. Scaling up the single-junction cells to a multi-junction tandem structure penetrates such limits. One of the promising tandem structures is the perovskite over silicon topology. Si junction is utilized as a counter bare cell with perovskites layer above, under applying the bandgap engineering aspects. Herein, we adopt BaTiO 3 /CsPbCl 3 /MAPbBr 3 /CH 3 NH 3 PbI 3 /c-Si tandem structure to be investigated. In tandem PVs, various input parameters can be tuned to maximize PCE, leading to a massive increase in the input combinations. Such a vast dataset directly reflects the computational requirements needed to simulate the wide range of combinations and the computational time. In this study, we seed our random-forest machine learning model with the 3×10 6 points’ dataset with our optoelectronic numerical model in SCAPS. The machine learning could estimate the maximum PCE limit of the proposed tandem structure at around 37.8%, which is more than double the bare Si-cell reported by 18%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习算法预测单片钙钛矿/硅串联结构的功率转换效率极限
串联结构已被引入光伏(PV)市场以提高功率转换效率(PCE)。单结电池的PCE,无论是同质结还是异质结,都被限制到与吸收材料带隙相关的理论极限。将单结电池扩展到多结串联结构突破了这些限制。其中一个很有前途的串联结构是钙钛矿硅拓扑结构。在应用带隙工程方面,硅结被用作钙钛矿层的对抗裸电池。本文采用batio3 /CsPbCl 3 /MAPbBr 3 / ch3nh3 pbi3 /c-Si串联结构进行研究。在串联pv中,可以调整各种输入参数以最大化PCE,从而导致输入组合的大量增加。如此庞大的数据集直接反映了模拟大范围组合所需的计算需求和计算时间。在本研究中,我们将随机森林机器学习模型与3×10 6点数据集结合在SCAPS中的光电数值模型中。机器学习可以估计所提出的串联结构的最大PCE限制约为37.8%,是裸硅电池(18%)的两倍多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of annealing in air on the properties of carbon-rich amorphous silicon carbide films The conductivity effect of the top coating on optical properties of thin Cu(Ag)-layered structures Difference in the structure and morphology of CVD diamond films grown on negatively charged and grounded substrate holders: Optical study Science in 2025-2027 and the SPQEO journal Asymmetry of resonant forward/backward reflectivity of metal – multilayer-dielectric nanostructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1