A machine learning method for soil conditioning automated decision-making of EPBM: hybrid GBDT and Random Forest Algorithm

IF 2.2 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Eksploatacja I Niezawodnosc-Maintenance and Reliability Pub Date : 2022-03-07 DOI:10.17531/ein.2022.2.5
Lin Lin, Hao Guo, Yancheng Lv, Jie Liu, Chang-sheng Tong, Shuqin Yang
{"title":"A machine learning method for soil conditioning automated decision-making of EPBM: hybrid GBDT and Random Forest Algorithm","authors":"Lin Lin, Hao Guo, Yancheng Lv, Jie Liu, Chang-sheng Tong, Shuqin Yang","doi":"10.17531/ein.2022.2.5","DOIUrl":null,"url":null,"abstract":"There lacks an automated decision-making method for soil conditioning of EPBM with high\naccuracy and efficiency that is applicable to changeable geological conditions and takes\ndrive parameters into consideration. A hybrid method of Gradient Boosting Decision Tree\n(GBDT) and random forest algorithm to make decisions on soil conditioning using foam is\nproposed in this paper to realize automated decision-making. Relevant parameters include\ndecision parameters (geological parameters and drive parameters) and target parameters\n(dosage of foam). GBDT, an efficient algorithm based on decision tree, is used to determine\nthe weights of geological parameters, forming 3 parameters sets. Then 3 decision-making\nmodels are established using random forest, an algorithm with high accuracy based on decision tree. The optimal model is obtained by Bayesian optimization. It proves that the model has obvious advantages in accuracy compared with other methods. The model can realize real-time decision-making with high accuracy under changeable geological conditions and reduce the experiment cost.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"14 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17531/ein.2022.2.5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

There lacks an automated decision-making method for soil conditioning of EPBM with high accuracy and efficiency that is applicable to changeable geological conditions and takes drive parameters into consideration. A hybrid method of Gradient Boosting Decision Tree (GBDT) and random forest algorithm to make decisions on soil conditioning using foam is proposed in this paper to realize automated decision-making. Relevant parameters include decision parameters (geological parameters and drive parameters) and target parameters (dosage of foam). GBDT, an efficient algorithm based on decision tree, is used to determine the weights of geological parameters, forming 3 parameters sets. Then 3 decision-making models are established using random forest, an algorithm with high accuracy based on decision tree. The optimal model is obtained by Bayesian optimization. It proves that the model has obvious advantages in accuracy compared with other methods. The model can realize real-time decision-making with high accuracy under changeable geological conditions and reduce the experiment cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土壤调节自动决策的机器学习方法:混合GBDT和随机森林算法
目前还缺乏一种适用于多变地质条件并考虑驱动参数的、高精度、高效的EPBM土壤调节自动化决策方法。本文提出了一种梯度增强决策树(GBDT)和随机森林算法的混合决策方法,用于泡沫土壤调节决策,实现自动化决策。相关参数包括决策参数(地质参数和驱动参数)和目标参数(泡沫用量)。采用基于决策树的高效算法GBDT确定地质参数的权重,形成3个参数集。然后利用随机森林这一基于决策树的高精度算法建立了3个决策模型。通过贝叶斯优化得到最优模型。与其他方法相比,该模型在精度上具有明显的优势。该模型可以在多变的地质条件下实现高精度的实时决策,降低实验成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
24.00%
发文量
55
审稿时长
3 months
期刊介绍: The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.
期刊最新文献
Study on reliability of emergency braking performance of high-speed and heavy-load monorail crane Fault analysis and reliability evaluation for motorized spindle of cycloidal gear grinding machine based on multi-source bayes Reliability Estimation of Retraction Mechanism Kinematic Accuracy under Small Sample Remaining useful life prediction of equipment considering dynamic thresholds under the influence of maintenance Fault Diagnosis of Suspension System Based on Spectrogram Image and Vision Transformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1