Molecular Motors–Nature’s Efficiency at Work

W. Teizer
{"title":"Molecular Motors–Nature’s Efficiency at Work","authors":"W. Teizer","doi":"10.1142/s2424942422400126","DOIUrl":null,"url":null,"abstract":"Nature has generated sophisticated and very efficient molecular motors, employed for nanoscale transport at the intracellular level. As a complementary tool to nanofluidics, these motors have been envisioned for nanotechnological devices. In order to pave the way for such applications, a thorough understanding of the mechanisms governing these motors is needed. Because of the complexity of their in vivo functions, this understanding is best acquired in vitro, where functional parameters can independently be controlled. I will report on work in my group that studies and harnesses the transport properties of molecular motors on functionalized structures of reduced dimensionality such as carbon nanotubes, 1 lithographically designed electrodes, 2 microwires, 3 loops 4 and swarms. 5 In addition, I will show results that demonstrate the potential of this work for biomedical advances. 6","PeriodicalId":52944,"journal":{"name":"Reports in Advances of Physical Sciences","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports in Advances of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424942422400126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nature has generated sophisticated and very efficient molecular motors, employed for nanoscale transport at the intracellular level. As a complementary tool to nanofluidics, these motors have been envisioned for nanotechnological devices. In order to pave the way for such applications, a thorough understanding of the mechanisms governing these motors is needed. Because of the complexity of their in vivo functions, this understanding is best acquired in vitro, where functional parameters can independently be controlled. I will report on work in my group that studies and harnesses the transport properties of molecular motors on functionalized structures of reduced dimensionality such as carbon nanotubes, 1 lithographically designed electrodes, 2 microwires, 3 loops 4 and swarms. 5 In addition, I will show results that demonstrate the potential of this work for biomedical advances. 6
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子马达——大自然的工作效率
大自然创造了复杂而高效的分子马达,用于细胞内的纳米级运输。作为纳米流体的补充工具,这些电机已经被设想用于纳米技术设备。为了为这样的应用铺平道路,需要对控制这些电机的机制有一个透彻的了解。由于其体内功能的复杂性,这种理解最好在体外获得,其中功能参数可以独立控制。我将报告我的小组研究和利用分子马达在降维功能化结构上的传输特性的工作,如碳纳米管、1个光刻设计的电极、2条微线、3条环路和蜂群。此外,我将展示证明这项工作在生物医学进步方面的潜力的结果。6
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
3 weeks
期刊最新文献
Formation of Major Types of Galaxies Based on the Energy Circulation Theory Many Worlds and the Vacuum Energy Problem On the Incompleteness of Birkhoff’s Theorem: A New Approach to the Central Symmetric Gravitational Field in Vacuum Space Replacement of Space-Time with Superfluid Space and Restoration of Newton’s Dynamic Ether Research Again Origin of the Asymmetry Between Matter and Antimatter — Energy Basic State Field of the Universe (∐)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1