Detecting voluntary gait initiation/termination intention using EEG

Junhyuk Choi, S. Lee, Seung-jong Kim, Jong Min Lee, Hyungmin Kim
{"title":"Detecting voluntary gait initiation/termination intention using EEG","authors":"Junhyuk Choi, S. Lee, Seung-jong Kim, Jong Min Lee, Hyungmin Kim","doi":"10.1109/IWW-BCI.2018.8311532","DOIUrl":null,"url":null,"abstract":"In this study, we employed a linear classifier to grasp the abstract features of electroencephalography (EEG) for recognizing voluntary gait intention and termination. We monitored Mu-band EEG to find gait intention and tried to detect a movement on/offset. Considerable gait-related (de) synchronization occurred hence, amplified by common spatial pattern (CSP). Performance of the classifier was evaluated in terms of classification success rates and false positive rates.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"9 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this study, we employed a linear classifier to grasp the abstract features of electroencephalography (EEG) for recognizing voluntary gait intention and termination. We monitored Mu-band EEG to find gait intention and tried to detect a movement on/offset. Considerable gait-related (de) synchronization occurred hence, amplified by common spatial pattern (CSP). Performance of the classifier was evaluated in terms of classification success rates and false positive rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用脑电图检测自主步态启动/终止意图
在这项研究中,我们使用线性分类器来掌握脑电图(EEG)的抽象特征,以识别自主步态的意图和终止。我们监测mu波段脑电图来发现步态意图,并试图检测运动/偏移。因此,大量的步态相关(非)同步发生,并被共同空间模式(CSP)放大。分类器的性能根据分类成功率和假阳性率进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1