Facial expression recognition with multithreaded cascade of rotation-invariant HOG

Jinhui Chen, T. Takiguchi, Y. Ariki
{"title":"Facial expression recognition with multithreaded cascade of rotation-invariant HOG","authors":"Jinhui Chen, T. Takiguchi, Y. Ariki","doi":"10.1109/ACII.2015.7344636","DOIUrl":null,"url":null,"abstract":"We propose a novel and general framework, named the multithreading cascade of rotation-invariant histograms of oriented gradients (McRiHOG) for facial expression recognition (FER). In this paper, we attempt to solve two problems about high-quality local feature descriptors and robust classifying algorithm for FER. The first solution is that we adopt annular spatial bins type HOG (Histograms of Oriented Gradients) descriptors to describe local patches. In this way, it significantly enhances the descriptors in regard to rotation-invariant ability and feature description accuracy; The second one is that we use a novel multithreading cascade to simultaneously learn multiclass data. Multithreading cascade is implemented through non-interfering boosting channels, which are respectively built to train weak classifiers for each expression. The superiority of McRiHOG over current state-of-the-art methods is clearly demonstrated by evaluation experiments based on three popular public databases, CK+, MMI, and AFEW.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"20 1","pages":"636-642"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a novel and general framework, named the multithreading cascade of rotation-invariant histograms of oriented gradients (McRiHOG) for facial expression recognition (FER). In this paper, we attempt to solve two problems about high-quality local feature descriptors and robust classifying algorithm for FER. The first solution is that we adopt annular spatial bins type HOG (Histograms of Oriented Gradients) descriptors to describe local patches. In this way, it significantly enhances the descriptors in regard to rotation-invariant ability and feature description accuracy; The second one is that we use a novel multithreading cascade to simultaneously learn multiclass data. Multithreading cascade is implemented through non-interfering boosting channels, which are respectively built to train weak classifiers for each expression. The superiority of McRiHOG over current state-of-the-art methods is clearly demonstrated by evaluation experiments based on three popular public databases, CK+, MMI, and AFEW.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于旋转不变HOG的多线程级联面部表情识别
我们提出了一种新的通用框架,称为面向梯度旋转不变直方图的多线程级联(McRiHOG)。本文试图解决高质量局部特征描述子和鲁棒分类算法两个问题。第一个解决方案是采用环形空间箱型HOG (Histograms of Oriented Gradients)描述符来描述局部斑块。这样,显著提高了描述子的旋转不变性能力和特征描述精度;其次,我们使用了一种新颖的多线程级联来同时学习多类数据。多线程级联通过互不干扰的增强通道实现,增强通道分别为每个表达式训练弱分类器。基于三个流行的公共数据库(CK+, MMI和few)的评估实验清楚地证明了McRiHOG优于当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1