Analysis of fat mass value, clinical and metabolic data and interleukin-6 in HIV-positive males using regression analyses and artificial neural network

IF 0.6 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Acta Scientiarum-technology Pub Date : 2022-03-11 DOI:10.4025/actascitechnol.v44i1.57634
N. F. Shamsuddin, M. S. Mohktar, R. Rajasuriar, Safwani Wan Kamarul Zaman, Fatimah Ibrahim, A. Kamarulzaman
{"title":"Analysis of fat mass value, clinical and metabolic data and interleukin-6 in HIV-positive males using regression analyses and artificial neural network","authors":"N. F. Shamsuddin, M. S. Mohktar, R. Rajasuriar, Safwani Wan Kamarul Zaman, Fatimah Ibrahim, A. Kamarulzaman","doi":"10.4025/actascitechnol.v44i1.57634","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to analyses the relationship between fat mass and inflammation marker, interleukin-6, clinical and metabolic data in 71 human immunodeficiency virus (HIV)-positive male patients using bivariate linear regression analyses and artificial neural network. The data used consisted of measurements collected from HIV male subjects aged 26 to 69 years, with body mass index (BMI) values between 15.47 and 36.98 kg m-2 and the fat mass values between 1.00 kg and 16.70 kg. The bivariate linear regression analyses showed that weight, waist-hip ratio, BMI, triglycerides, high-density lipoprotein and HIV viral load value were significant risk factors associated with the body fat mass in male HIV patients. Furthermore, an in-depth non-linear analysis has been performed using artificial neural network (ANN) to predict fat mass by using the significant predictors as input. ANN model with four hidden neurons obtained the highest mean predictive accuracy percentage of 85.26%. The finding of this study is able to help with the evaluation of the fat mass in the male HIV patients that consequently reflects the patients metabolic-related irregularity and immune response. It is also believed that the outcome from the analysis can help future HIV-related study on the prediction of body fat mass in male HIV patients especially in settings where dual energy X-ray absorptiometry assessments, the standard measurement method for fat mass are not available or affordable","PeriodicalId":7140,"journal":{"name":"Acta Scientiarum-technology","volume":"39 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum-technology","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.4025/actascitechnol.v44i1.57634","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to analyses the relationship between fat mass and inflammation marker, interleukin-6, clinical and metabolic data in 71 human immunodeficiency virus (HIV)-positive male patients using bivariate linear regression analyses and artificial neural network. The data used consisted of measurements collected from HIV male subjects aged 26 to 69 years, with body mass index (BMI) values between 15.47 and 36.98 kg m-2 and the fat mass values between 1.00 kg and 16.70 kg. The bivariate linear regression analyses showed that weight, waist-hip ratio, BMI, triglycerides, high-density lipoprotein and HIV viral load value were significant risk factors associated with the body fat mass in male HIV patients. Furthermore, an in-depth non-linear analysis has been performed using artificial neural network (ANN) to predict fat mass by using the significant predictors as input. ANN model with four hidden neurons obtained the highest mean predictive accuracy percentage of 85.26%. The finding of this study is able to help with the evaluation of the fat mass in the male HIV patients that consequently reflects the patients metabolic-related irregularity and immune response. It is also believed that the outcome from the analysis can help future HIV-related study on the prediction of body fat mass in male HIV patients especially in settings where dual energy X-ray absorptiometry assessments, the standard measurement method for fat mass are not available or affordable
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用回归分析和人工神经网络分析hiv阳性男性的脂肪质量值、临床和代谢数据以及白细胞介素-6
本研究旨在利用双变量线性回归分析和人工神经网络分析71例HIV阳性男性患者的脂肪量与炎症标志物、白细胞介素-6、临床和代谢数据的关系。所使用的数据包括从26至69岁的艾滋病毒男性受试者中收集的测量数据,体重指数(BMI)值在15.47至36.98 kg m-2之间,脂肪量值在1.00至16.70 kg之间。双变量线性回归分析显示,体重、腰臀比、BMI、甘油三酯、高密度脂蛋白和HIV病毒载量值是影响男性HIV患者体脂量的显著危险因素。此外,利用人工神经网络(ANN)进行了深入的非线性分析,以显著预测因子作为输入来预测脂肪量。4个隐藏神经元的ANN模型平均预测准确率最高,达到85.26%。本研究的发现能够帮助评估男性HIV患者的脂肪量,从而反映患者代谢相关的紊乱和免疫反应。我们还认为,分析结果可以帮助未来的HIV相关研究预测男性HIV患者的体脂量,特别是在双能x线吸收仪评估,脂肪量的标准测量方法无法获得或负担不起的情况下
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Scientiarum-technology
Acta Scientiarum-technology 综合性期刊-综合性期刊
CiteScore
1.40
自引率
12.50%
发文量
60
审稿时长
6-12 weeks
期刊介绍: The journal publishes original articles in all areas of Technology, including: Engineerings, Physics, Chemistry, Mathematics, Statistics, Geosciences and Computation Sciences. To establish the public inscription of knowledge and its preservation; To publish results of research comprising ideas and new scientific suggestions; To publicize worldwide information and knowledge produced by the scientific community; To speech the process of scientific communication in Technology.
期刊最新文献
Numerical Integration of locally Peaked Bivariate Functions Synthesis and characterization of a new ruthenium (II) terpyridyl diphosphine complex Pesticide residues detected in Colossoma macropomum by the modified QuEChERS and GC-MS/MS methods Relationship between the rainfall index for Southern Brazil and the indexes of the Tropical Pacific and the Tropical Atlantic Oceans DNA Release from Polyaziridine Polyplexes Aided by Biomacromolecules: Effect of pH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1