Effects ofAdding Hydrotalcite with Different Compositional Ratios in the Pyrolysis Treatment of Brominated Plastics

Kimi Hanazawa, Moemi Toritsuka, Naoyuki Morita
{"title":"Effects ofAdding Hydrotalcite with Different Compositional Ratios in the Pyrolysis Treatment of Brominated Plastics","authors":"Kimi Hanazawa, Moemi Toritsuka, Naoyuki Morita","doi":"10.18178/ijcea.2021.12.1.788","DOIUrl":null,"url":null,"abstract":"In recent years, chemical recycling technologies related to the pyrolysis of plastics into fuels have received increasing attention under the circular economy agenda with respect to resource depletion. Herein, a method is presented to reduce halogen compounds in the product oil derived from the pyrolysis of polystyrene with tetrabromobisphenol A. Analysis was undertaken to identify the bromine compounds present in the residue after the pyrolysis treatment. Pyrolysis was conducted in the presence of hydrotalcites as a function of the Mg and Al additive composition ratio (type 1; KW-1000 and type 2; K W-2000). The bromine compounds identified in the oil after pyrolysis at 400 °C were determined as 2-bromophenol, 4- bromophenol, 2,4-dibromophenol, 1- bromomethylbenzene, 2- bromomethylbenzene, and 3,6-dibromo-2,5-xylidine. In the absence of hydrotalcite, bromine compounds were still detected in the product oil, residue and gas, whereas the addition of KW-2000 reduced the concentration of bromine compounds in the product oil. The reduced concentration of the bromine compounds in the product oil is suggested to be related to the trapping of bromine by the added hydrotalcite during the pyrolysis of the plastic.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2021.12.1.788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, chemical recycling technologies related to the pyrolysis of plastics into fuels have received increasing attention under the circular economy agenda with respect to resource depletion. Herein, a method is presented to reduce halogen compounds in the product oil derived from the pyrolysis of polystyrene with tetrabromobisphenol A. Analysis was undertaken to identify the bromine compounds present in the residue after the pyrolysis treatment. Pyrolysis was conducted in the presence of hydrotalcites as a function of the Mg and Al additive composition ratio (type 1; KW-1000 and type 2; K W-2000). The bromine compounds identified in the oil after pyrolysis at 400 °C were determined as 2-bromophenol, 4- bromophenol, 2,4-dibromophenol, 1- bromomethylbenzene, 2- bromomethylbenzene, and 3,6-dibromo-2,5-xylidine. In the absence of hydrotalcite, bromine compounds were still detected in the product oil, residue and gas, whereas the addition of KW-2000 reduced the concentration of bromine compounds in the product oil. The reduced concentration of the bromine compounds in the product oil is suggested to be related to the trapping of bromine by the added hydrotalcite during the pyrolysis of the plastic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加不同配比水滑石对溴化塑料热解处理的影响
近年来,在资源枯竭的循环经济议程下,与塑料热解成燃料相关的化学回收技术越来越受到关注。本文提出了一种用四溴双酚a热解聚苯乙烯所得成品油中卤素化合物的还原方法,并对热解后残渣中存在的溴化合物进行了分析。在水滑石存在的情况下进行热解,这与Mg和Al添加剂组成比(1型;KW-1000型和2型;K w - 2000)。经400℃热解后,在油中鉴定出的溴化合物分别为2-溴苯酚、4-溴苯酚、2,4-二溴苯酚、1-溴甲基苯、2-溴甲基苯和3,6-二溴-2,5-二甲苯。在没有水滑石的情况下,成品油、渣油和气中仍检测到溴化合物,而加入KW-2000后,成品油中溴化合物的浓度降低。成品油中溴化合物浓度的降低可能与塑料热解过程中添加的水滑石对溴的捕获有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Antioxidant Property from Water Extraction of Garcia Mangostana Using Response Surface Methodology Effect of Blumea Balsamifera Extract on the Kinetics of Calcium Oxalate Monohydrate (COM) Dissolution Biotransformation of Lignocellulosic Biomass Hydrolysate into Polyhydroxybutyrate Biopolymer via Ralstonia Eutropha Molecularly Imprinted Polymer (MIP)-Based Electrochemical Sensor for Determination of Amyloid β-42 in Alzheimer’s Disease A Molecularly Imprinted Polymer-Based Electrochemical Sensor for Heart Failure Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1