Low-cost optical splitter for neural stimulations using off-the-shelf ultraviolet adhesives

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Micro/Nanolithography, MEMS, and MOEMS Pub Date : 2019-02-19 DOI:10.1117/1.JMM.18.1.015502
P. Mahmoudi, H. Veladi, F. Pakdel, J. Frounchi
{"title":"Low-cost optical splitter for neural stimulations using off-the-shelf ultraviolet adhesives","authors":"P. Mahmoudi, H. Veladi, F. Pakdel, J. Frounchi","doi":"10.1117/1.JMM.18.1.015502","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Optical stimulation of the brain is based on optrodes with integrated optical splitters to excite multiple neurons simultaneously. This requires efficient light delivery systems. Aim: In order to satisfy optical requirements, to reduce the fabrication costs, and to obtain less invasive implantation into the brain, we assess a polymer-based microdevice both in theory and experiments. Approach: In addition to design and evaluation of the device using Multiphysics software, to achieve a feasible implementation, we base our fabrication process on off-the-shelf ultraviolet adhesives as the functional material with fascinating optical and mechanical characteristics all together, easy photolithographic-only curing, and no more steps required for common soft lithographic-based materials. Results: Wideband transmission of optical signals over the visible/near-infrared together with uniform splitting of the input power from different light sources has been observed and recorded using an optical setup with acceptable agreement with the simulation outcomes. Conclusions: Our research proposes a flexible and biocompatible optical splitter to be used as a light delivery system for a wide variety of optical stimulation methods in neuroscience studies with fewer or no changes in the design, dimensions, and even exploited materials. So it is a multipurpose device.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"3 1","pages":"015502 - 015502"},"PeriodicalIF":1.5000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.18.1.015502","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Background: Optical stimulation of the brain is based on optrodes with integrated optical splitters to excite multiple neurons simultaneously. This requires efficient light delivery systems. Aim: In order to satisfy optical requirements, to reduce the fabrication costs, and to obtain less invasive implantation into the brain, we assess a polymer-based microdevice both in theory and experiments. Approach: In addition to design and evaluation of the device using Multiphysics software, to achieve a feasible implementation, we base our fabrication process on off-the-shelf ultraviolet adhesives as the functional material with fascinating optical and mechanical characteristics all together, easy photolithographic-only curing, and no more steps required for common soft lithographic-based materials. Results: Wideband transmission of optical signals over the visible/near-infrared together with uniform splitting of the input power from different light sources has been observed and recorded using an optical setup with acceptable agreement with the simulation outcomes. Conclusions: Our research proposes a flexible and biocompatible optical splitter to be used as a light delivery system for a wide variety of optical stimulation methods in neuroscience studies with fewer or no changes in the design, dimensions, and even exploited materials. So it is a multipurpose device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经刺激的低成本光分离器,使用现成的紫外线粘合剂
摘要背景:大脑的光刺激是基于集成光分离器的光电极同时刺激多个神经元。这需要高效的光传输系统。目的:为了满足光学要求,降低制造成本,减少植入大脑的侵入性,我们从理论和实验两方面对聚合物微装置进行了评估。方法:除了使用Multiphysics软件对设备进行设计和评估外,为了实现可行的实现,我们将现成的紫外线粘合剂作为功能材料,具有迷人的光学和机械特性,易于光刻固化,无需常见软光刻基材料的更多步骤。结果:使用光学装置观察和记录了可见光/近红外光信号的宽带传输以及来自不同光源的输入功率的均匀分裂,与模拟结果一致。结论:我们的研究提出了一种柔性和生物相容性的光分离器,可作为神经科学研究中各种光刺激方法的光传输系统,其设计,尺寸甚至所使用的材料都很少或没有变化。所以它是一个多用途设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
期刊最新文献
Rayleigh or Abbe? Origin and naming of the resolution formula of microlithography JM3 is Gone, Long Live JM3! Direct comparison of line edge roughness measurements by SEM and a metrological tilting-atomic force microscopy for reference metrology Resolution enhancement with source-wavelength optimization according to illumination angle in optical lithography Particle and pattern discriminant freeze-cleaning method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1