Systematic growth of carbon nanotubes on aluminum substrate for enhanced field emission performance

P. Maity, S. Gandhi, Manuj Dixit, I. Lahiri
{"title":"Systematic growth of carbon nanotubes on aluminum substrate for enhanced field emission performance","authors":"P. Maity, S. Gandhi, Manuj Dixit, I. Lahiri","doi":"10.1116/6.0000560","DOIUrl":null,"url":null,"abstract":"For more than two decades, carbon nanotubes (CNTs) have shown great potential for a wide range of applications. Several methods are known to synthesize CNTs, though only a few of them are able to produce good quality and economically available CNTs. Chemical vapor deposition (CVD) is one of those methods that produce economically feasible and good quality CNTs onto specific substrates, even with nanopatterning. However, growing CNTs by CVD at temperatures below 700 °C remained a long-time challenge, as this meant keeping a host of low-melting materials out of bounds for direct CNT growth on them. In this work, CNTs have been synthesized directly onto a low-melting, conducting substrate, aluminum, by thermal CVD, at a temperature as low as 550 °C and up to as high as 650 °C (just below the melting point of aluminum). The diameters of the grown CNTs were observed to be influenced by process parameters, e.g., temperature and pressure. The effect of synthesis parameters on CNT diameters was verified by scanning electron microscopy and transmission electron microscopy. The quality of the CNTs was checked by Raman spectroscopy, selected area electron diffraction pattern of transmission electron microscopy, and XPS. It was observed that an increase in temperature and pressure had a significant effect on the diameters of the CNTs. Randomly entangled CNTs were measured to have an average diameter of 28 nm at 550 °C and one atmospheric (760 Torr) pressure, whereas it was observed to be 78 nm at a temperature of 650 °C and pressure of 0.01 Torr. The field emission response, i.e., the turn-on field (2.5 V/μm) and the maximum emission current density (2.17 mA/cm2) of the CNTs synthesized at the temperature of 550 °C and pressure of 1 atm (760 Torr) was found to be excellent.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For more than two decades, carbon nanotubes (CNTs) have shown great potential for a wide range of applications. Several methods are known to synthesize CNTs, though only a few of them are able to produce good quality and economically available CNTs. Chemical vapor deposition (CVD) is one of those methods that produce economically feasible and good quality CNTs onto specific substrates, even with nanopatterning. However, growing CNTs by CVD at temperatures below 700 °C remained a long-time challenge, as this meant keeping a host of low-melting materials out of bounds for direct CNT growth on them. In this work, CNTs have been synthesized directly onto a low-melting, conducting substrate, aluminum, by thermal CVD, at a temperature as low as 550 °C and up to as high as 650 °C (just below the melting point of aluminum). The diameters of the grown CNTs were observed to be influenced by process parameters, e.g., temperature and pressure. The effect of synthesis parameters on CNT diameters was verified by scanning electron microscopy and transmission electron microscopy. The quality of the CNTs was checked by Raman spectroscopy, selected area electron diffraction pattern of transmission electron microscopy, and XPS. It was observed that an increase in temperature and pressure had a significant effect on the diameters of the CNTs. Randomly entangled CNTs were measured to have an average diameter of 28 nm at 550 °C and one atmospheric (760 Torr) pressure, whereas it was observed to be 78 nm at a temperature of 650 °C and pressure of 0.01 Torr. The field emission response, i.e., the turn-on field (2.5 V/μm) and the maximum emission current density (2.17 mA/cm2) of the CNTs synthesized at the temperature of 550 °C and pressure of 1 atm (760 Torr) was found to be excellent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在铝衬底上系统生长碳纳米管以增强场发射性能
近二十年来,碳纳米管(CNTs)已显示出广泛的应用潜力。目前已知几种合成碳纳米管的方法,但只有少数几种方法能够制备出高质量且经济可行的碳纳米管。化学气相沉积(CVD)是在特定衬底上生产经济可行且质量良好的碳纳米管的方法之一,即使采用纳米图案。然而,在低于700°C的温度下通过CVD生长碳纳米管仍然是一个长期的挑战,因为这意味着要保持大量低熔点材料在其上直接生长碳纳米管的范围之外。在这项工作中,通过热气相沉积法将碳纳米管直接合成到低熔点的导电衬底铝上,温度低至550℃,高至650℃(刚好低于铝的熔点)。观察到生长的CNTs的直径受工艺参数(如温度和压力)的影响。通过扫描电镜和透射电镜验证了合成参数对碳纳米管直径的影响。通过拉曼光谱、透射电子显微镜的选定区域电子衍射图和XPS检查CNTs的质量。观察到温度和压力的增加对CNTs的直径有显著影响。随机缠绕的碳纳米管在550°C和一个大气压(760 Torr)下的平均直径为28 nm,而在650°C和0.01 Torr压力下的平均直径为78 nm。在550℃、760 Torr (1atm)压力下合成的CNTs具有优异的场发射响应性能,即导通场(2.5 V/μm)和最大发射电流密度(2.17 mA/cm2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunable and scalable fabrication of plasmonic dimer arrays with sub-10 nm nanogaps by area-selective atomic layer deposition Characterization and optimization of bonding and interconnect technology for 3D stacking thin dies Ultradeep microaxicons in lithium niobate by focused Xe ion beam milling Self-powered ultraviolet photodiode based on lateral polarity structure GaN films Electrical conductivity across the alumina support layer following carbon nanotube growth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1