{"title":"Human Factors and Bioagent Transmission following an Indoor Bioterror Attack","authors":"Jonathon Taylor, K. Lai, Z. Nasir","doi":"10.4172/2157-2526.1000116","DOIUrl":null,"url":null,"abstract":"The spread of bioagent through the population in a building following a bioattack is dependent on the built environment, the characteristics of the agent and the medium in which it is introduced, and the actions of individuals inside the building. While there has been a great deal of research on the spread of contaminants in indoor environments, many studies do not take into account the impact of human factors on bioagent spread and transmission. This paper discusses how bioagents may be spread through an indoor environment following an attack due to the behaviours and characteristics of the building population, in terms of their typical behaviour, as well as any emergency response measures they implement. Modelling methodologies are proposed which can be used to supplement existing air transport and Markovian models in order to take into account the actions and decisions of the building population.","PeriodicalId":15179,"journal":{"name":"Journal of Bioterrorism and Biodefense","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioterrorism and Biodefense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-2526.1000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The spread of bioagent through the population in a building following a bioattack is dependent on the built environment, the characteristics of the agent and the medium in which it is introduced, and the actions of individuals inside the building. While there has been a great deal of research on the spread of contaminants in indoor environments, many studies do not take into account the impact of human factors on bioagent spread and transmission. This paper discusses how bioagents may be spread through an indoor environment following an attack due to the behaviours and characteristics of the building population, in terms of their typical behaviour, as well as any emergency response measures they implement. Modelling methodologies are proposed which can be used to supplement existing air transport and Markovian models in order to take into account the actions and decisions of the building population.