S. H. Rezatofighi, Anton Milan, Zhen Zhang, Javen Qinfeng Shi, A. Dick, I. Reid
{"title":"Joint Probabilistic Data Association Revisited","authors":"S. H. Rezatofighi, Anton Milan, Zhen Zhang, Javen Qinfeng Shi, A. Dick, I. Reid","doi":"10.1109/ICCV.2015.349","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the joint probabilistic data association (JPDA) technique and propose a novel solution based on recent developments in finding the m-best solutions to an integer linear program. The key advantage of this approach is that it makes JPDA computationally tractable in applications with high target and/or clutter density, such as spot tracking in fluorescence microscopy sequences and pedestrian tracking in surveillance footage. We also show that our JPDA algorithm embedded in a simple tracking framework is surprisingly competitive with state-of-the-art global tracking methods in these two applications, while needing considerably less processing time.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"3 5 1","pages":"3047-3055"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"309","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 309
Abstract
In this paper, we revisit the joint probabilistic data association (JPDA) technique and propose a novel solution based on recent developments in finding the m-best solutions to an integer linear program. The key advantage of this approach is that it makes JPDA computationally tractable in applications with high target and/or clutter density, such as spot tracking in fluorescence microscopy sequences and pedestrian tracking in surveillance footage. We also show that our JPDA algorithm embedded in a simple tracking framework is surprisingly competitive with state-of-the-art global tracking methods in these two applications, while needing considerably less processing time.