Modelling and Characterization of a High-Efficiency, Cm-Scale and Low Velocity Airflow-Driven Harvester for Autonomous Wireless Sensor Nodes

P. Gasnier, B. Alessandri, T. Fayer, N. Garraud, E. Pauliac-Vaujour, S. Boisseau
{"title":"Modelling and Characterization of a High-Efficiency, Cm-Scale and Low Velocity Airflow-Driven Harvester for Autonomous Wireless Sensor Nodes","authors":"P. Gasnier, B. Alessandri, T. Fayer, N. Garraud, E. Pauliac-Vaujour, S. Boisseau","doi":"10.1109/PowerMEMS49317.2019.41031600279","DOIUrl":null,"url":null,"abstract":"This paper reports the design, simulation, fabrication and performances of a centimeter-scale $(\\emptyset=35\\mathrm{m}\\mathrm{m})$ airflow-driven harvester for autonomous Wireless Sensor Nodes (WSN). We present a model-based design tool implemented in Matlab-Simulink, which takes both computational fluid dynamics and electromagnetic fmite element simulations as inputs and we compare the simulation results with measurements for various air velocities. The harvester has a cut-in speed of 2 $\\mathrm{m}.\\mathrm{s}^{-1}$ and it is particularly efficient in the low airflow environments since its end-to-end efficiency ranges from 10.5% to 23.9% and its maximum output power from 200 $\\mu \\mathrm{W}\\mathrm{t}\\mathrm{o}3.7\\mathrm{m}\\mathrm{W}$ at 1.5 $\\mathrm{m}.\\mathrm{s}^{-1}$ and 3 $\\mathrm{m}.\\mathrm{s}^{-1}$ respectively. The propeller alone has a mechanical power coefficient ranging from 19.1% to 34% at 1.5 $\\mathrm{m}.\\mathrm{s}^{-1}$ and 3 $\\mathrm{m}.\\mathrm{s}^{-1}$ respectively. Furthermore, in the cm-scale and low airflow velocity ranges, the proposed harvester without shroud outperforms the state of the art in terms of power density and end-to-end efficiency (23.9% at 3 $\\mathrm{m}.\\mathrm{s}^{-1}$, 28% at 5 $\\mathrm{m}.\\mathrm{s}^{-1}$) and it still exhibits one of the highest performances with its shroud.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.41031600279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports the design, simulation, fabrication and performances of a centimeter-scale $(\emptyset=35\mathrm{m}\mathrm{m})$ airflow-driven harvester for autonomous Wireless Sensor Nodes (WSN). We present a model-based design tool implemented in Matlab-Simulink, which takes both computational fluid dynamics and electromagnetic fmite element simulations as inputs and we compare the simulation results with measurements for various air velocities. The harvester has a cut-in speed of 2 $\mathrm{m}.\mathrm{s}^{-1}$ and it is particularly efficient in the low airflow environments since its end-to-end efficiency ranges from 10.5% to 23.9% and its maximum output power from 200 $\mu \mathrm{W}\mathrm{t}\mathrm{o}3.7\mathrm{m}\mathrm{W}$ at 1.5 $\mathrm{m}.\mathrm{s}^{-1}$ and 3 $\mathrm{m}.\mathrm{s}^{-1}$ respectively. The propeller alone has a mechanical power coefficient ranging from 19.1% to 34% at 1.5 $\mathrm{m}.\mathrm{s}^{-1}$ and 3 $\mathrm{m}.\mathrm{s}^{-1}$ respectively. Furthermore, in the cm-scale and low airflow velocity ranges, the proposed harvester without shroud outperforms the state of the art in terms of power density and end-to-end efficiency (23.9% at 3 $\mathrm{m}.\mathrm{s}^{-1}$, 28% at 5 $\mathrm{m}.\mathrm{s}^{-1}$) and it still exhibits one of the highest performances with its shroud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自主无线传感器节点的高效、厘米级和低速气流驱动收割机的建模和表征
本文报道了用于自主无线传感器节点(WSN)的厘米级$(\emptyset=35\mathrm{m}\mathrm{m})$气流驱动采集器的设计、仿真、制造和性能。我们提出了一个基于模型的设计工具,在Matlab-Simulink中实现,它将计算流体动力学和电磁有限元模拟作为输入,并将模拟结果与不同空气速度的测量结果进行了比较。收割机的切割速度为2 $\ mathm {m}。\ mathm {s}^{-1}$在低气流环境下特别高效,因为它的端到端效率范围从10.5%到23.9%,其最大输出功率从200 $\mu \ mathm {W}\ mathm {t}\ mathm {o}3.7\ mathm {m}\ mathm {W}$到1.5 $\ mathm {m} $。\ mathm {s}^{-1}$和3 $\ mathm {m}。美元\ mathrm{年代}^{1}。螺旋桨单独具有在1.5 $\ mathm {m}时从19.1%到34%的机械功率系数。\ mathm {s}^{-1}$和3 $\ mathm {m}。美元\ mathrm{年代}^{1}。此外,在厘米尺度和低气流速度范围内,所提出的无护罩收割机在功率密度和端到端效率方面优于目前的技术水平(在3 $\math {m}时为23.9%)。\mathrm{s}^{-1}$,在5 $\mathrm{m}.\mathrm{s}^{-1}$时的28%),它仍然表现出最高的性能之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal Insulation Design of Portable Radioisotope Electrical Generators Multi-Megahertz IPT Systems for Biomedical Devices Applications Modeling and Analysis of a Piezoelectric Stick-slip Energy Harvester Thermal energy harvesting through the fur of endothermic animals Mems Ion Sources For Spectroscopic Identification Of Gaseous And Liquid Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1