Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Growth Modeling

P. Rupšys, E. Petrauskas
{"title":"Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Growth Modeling","authors":"P. Rupšys, E. Petrauskas","doi":"10.1155/2015/375270","DOIUrl":null,"url":null,"abstract":"A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. Additionally, the stochastic differential equation (SDE) method provides more sophisticated mathematical analysis tools compared to regression approaches. We examine tree crown width dynamic with the Bertalanffy type SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of  crown width. This model allows us to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. In this paper, we propose a parameter estimation method and computational guidelines. Performance statistics for the crown width equation include statistical indexes, Shapiro-Wilk test, normal probability plot and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues our modeling technique.","PeriodicalId":17006,"journal":{"name":"Journal of Selcuk University Natural and Applied Science","volume":"40 1","pages":"57-66"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Selcuk University Natural and Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/375270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. Additionally, the stochastic differential equation (SDE) method provides more sophisticated mathematical analysis tools compared to regression approaches. We examine tree crown width dynamic with the Bertalanffy type SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of  crown width. This model allows us to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. In this paper, we propose a parameter estimation method and computational guidelines. Performance statistics for the crown width equation include statistical indexes, Shapiro-Wilk test, normal probability plot and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues our modeling technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机混合效应参数Bertalanffy过程,及其在树木生长建模中的应用
基于Bertalanffy定律的随机建模方法由于能够产生比确定性方法更准确的结果而引起了人们的兴趣。此外,与回归方法相比,随机微分方程(SDE)方法提供了更复杂的数学分析工具。我们用Bertalanffy型SDE和混合效应参数检查树冠宽度动态。在这项研究中,我们展示了如何使用这个简单的模型来计算冠宽的预测。该模型允许我们通过考虑乳房高度和冠宽直径的离散采样并使用最大似然程序来估计参数。本文提出了一种参数估计方法和计算准则。冠宽方程的性能统计包括统计指标、Shapiro-Wilk检验、正态概率图和残差分析。我们使用立陶宛国家森林清单提供的苏格兰松树数据来说明我们的建模技术问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Growth Modeling Geochemical Partitioning of Some Heavy Metals in Bottom Sediment of River Delimi in Jos, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1