A. E. Hamzah, M. Zan, M. Elgaud, Mahmoud Muhanad Fadhel, S. A. Alwash, A. A. Abushagur, M. Mokhtar, Nur Hidayah Azeman, Sawal Hamid bin Mohd Ali, A. Bakar
{"title":"Signal Generation using System on Chip for Coded Fiber Bragg Grating Sensor","authors":"A. E. Hamzah, M. Zan, M. Elgaud, Mahmoud Muhanad Fadhel, S. A. Alwash, A. A. Abushagur, M. Mokhtar, Nur Hidayah Azeman, Sawal Hamid bin Mohd Ali, A. Bakar","doi":"10.1109/ICP46580.2020.9206478","DOIUrl":null,"url":null,"abstract":"This article describes the feasibility of signal generation by employing the System on Chip (SoC) ZedBoard™ platform to produce intensity modulation in Time Division Multiplexing-fiber Bragg grating sensor. SoC has the capability to reduce complexity and increase the flexibility in the design of digital instruments. Experimental results show that the system can regulate the period and Duty cycle for two output waveforms and frequency. The employment of SoC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse, since it shows a rapid response time of 3.4 ns compared to 8.2 ns when Arbitrary Waveform Generator is used. Further enhancement on accuracy can be done by using a high-speed digital-analog converter board with a higher sampling rate.","PeriodicalId":6758,"journal":{"name":"2020 IEEE 8th International Conference on Photonics (ICP)","volume":"1 1","pages":"80-81"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Photonics (ICP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICP46580.2020.9206478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This article describes the feasibility of signal generation by employing the System on Chip (SoC) ZedBoard™ platform to produce intensity modulation in Time Division Multiplexing-fiber Bragg grating sensor. SoC has the capability to reduce complexity and increase the flexibility in the design of digital instruments. Experimental results show that the system can regulate the period and Duty cycle for two output waveforms and frequency. The employment of SoC in the TDM-FBG sensor system provides overall performance enhancement over the conventional single pulse, since it shows a rapid response time of 3.4 ns compared to 8.2 ns when Arbitrary Waveform Generator is used. Further enhancement on accuracy can be done by using a high-speed digital-analog converter board with a higher sampling rate.