Prediksi Deret Waktu Manajemen Lalu Lintas

M. U. Albab, Elly Anjarsari, Rahma Febriyanti, Marissa Dewi Fatimah
{"title":"Prediksi Deret Waktu Manajemen Lalu Lintas","authors":"M. U. Albab, Elly Anjarsari, Rahma Febriyanti, Marissa Dewi Fatimah","doi":"10.56013/axi.v8i1.1988","DOIUrl":null,"url":null,"abstract":"Optimizing customer service for the number of drivers in an area through real-time transportation service industry online to scale up. In this paper, the dataset used is traffic management accompanied by attributes such as level 6 geohash, day, timestamp, and demand. The dataset used is a sample from geohash6 coded qp0991, containing online transportation demands from 01/04/2018 until 31/05/2018 (61 days). The training datasets are from the qp0991 code sample, starting from 01/04/2018 until 10/05/2018 and the remaining datasets are used as the testing datasets. The percentages for training and testing are respectively 67% and 33%. The methods applied to construct the objective function are three different forecasting methods, namely the Naïve approach, auto-regressive integrated moving average (ARIMA), and simple exponential smoothing. The results of this study indicate that the simple exponential smoothing method is better than the naïve approach and auto-regressive integrated moving average based on the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The simple exponential smoothing has an accuracy rate of 98.7% for the RMSE value, 98.9% for the MAE value, and 88.81% for the MAPE value. \nKeywords: time series, traffic management","PeriodicalId":55794,"journal":{"name":"MaPan Jurnal Matematika dan Pembelajaran","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MaPan Jurnal Matematika dan Pembelajaran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56013/axi.v8i1.1988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing customer service for the number of drivers in an area through real-time transportation service industry online to scale up. In this paper, the dataset used is traffic management accompanied by attributes such as level 6 geohash, day, timestamp, and demand. The dataset used is a sample from geohash6 coded qp0991, containing online transportation demands from 01/04/2018 until 31/05/2018 (61 days). The training datasets are from the qp0991 code sample, starting from 01/04/2018 until 10/05/2018 and the remaining datasets are used as the testing datasets. The percentages for training and testing are respectively 67% and 33%. The methods applied to construct the objective function are three different forecasting methods, namely the Naïve approach, auto-regressive integrated moving average (ARIMA), and simple exponential smoothing. The results of this study indicate that the simple exponential smoothing method is better than the naïve approach and auto-regressive integrated moving average based on the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The simple exponential smoothing has an accuracy rate of 98.7% for the RMSE value, 98.9% for the MAE value, and 88.81% for the MAPE value. Keywords: time series, traffic management
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时交通管理预测
优化客户服务,为一个地区的司机数量,通过实时交通服务行业在线规模化。在本文中,使用的数据集是流量管理,并伴随着诸如6级geohash、日期、时间戳和需求等属性。使用的数据集是geohash6编码qp0991的样本,包含从2018年4月1日到2018年5月31日(61天)的在线运输需求。训练数据集来自qp0991代码样本,从01/04/2018开始到10/05/2018,其余数据集作为测试数据集。培训和测试的比例分别为67%和33%。构建目标函数的方法是三种不同的预测方法,即Naïve方法、自回归综合移动平均(ARIMA)方法和简单指数平滑方法。本研究结果表明,简单指数平滑方法优于naïve方法和基于均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)的自回归综合移动平均。简单指数平滑对RMSE值、MAE值和MAPE值的准确率分别为98.7%、98.9%和88.81%。关键词:时间序列;交通管理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
14
审稿时长
24 weeks
期刊最新文献
THE EFFECT OF THE POWER OF TWO METHOD.ON MATHEMATICAL REASONING ABILITY OF CLASS VIII MTs DARUL ABROR KEDUNGJATI PURBALINGGA THE CRITICAL THINKING ABILITY OF STUDENT WITH LOW PRIOR KNOWLEDGE WHO LEARN USING PROBLEM BASED LEARNING DEVELOPMENT OF INTEGRATED DISCRETE MATHEMATICS TEACHINGBOOK WITH OPS TRANSFORMATION STUDENTS’ IMPROVED UNDERSTANDING OF LIMIT TRIGONOMETRIC FUNCTIONS THROUGH IMPLEMENTATION JIGSAW LEARNING STUDENT LEARNING INTEREST IN THE USE OF AUGMENTED REALITY MEDIA ON TRIANGLES AND QUADRILATERALS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1