Nonlinear Residual Echo Suppression Based on Multi-stream Conv-TasNet

Hongsheng Chen, Teng Xiang, Kai-Jyun Chen, Jing Lu
{"title":"Nonlinear Residual Echo Suppression Based on Multi-stream Conv-TasNet","authors":"Hongsheng Chen, Teng Xiang, Kai-Jyun Chen, Jing Lu","doi":"10.21437/interspeech.2020-2234","DOIUrl":null,"url":null,"abstract":"Acoustic echo cannot be entirely removed by linear adaptive filters due to the nonlinear relationship between the echo and far-end signal. Usually a post processing module is required to further suppress the echo. In this paper, we propose a residual echo suppression method based on the modification of fully convolutional time-domain audio separation network (Conv-TasNet). Both the residual signal of the linear acoustic echo cancellation system, and the output of the adaptive filter are adopted to form multiple streams for the Conv-TasNet, resulting in more effective echo suppression while keeping a lower latency of the whole system. Simulation results validate the efficacy of the proposed method in both single-talk and double-talk situations.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2020-2234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Acoustic echo cannot be entirely removed by linear adaptive filters due to the nonlinear relationship between the echo and far-end signal. Usually a post processing module is required to further suppress the echo. In this paper, we propose a residual echo suppression method based on the modification of fully convolutional time-domain audio separation network (Conv-TasNet). Both the residual signal of the linear acoustic echo cancellation system, and the output of the adaptive filter are adopted to form multiple streams for the Conv-TasNet, resulting in more effective echo suppression while keeping a lower latency of the whole system. Simulation results validate the efficacy of the proposed method in both single-talk and double-talk situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多流卷积tasnet的非线性残留回波抑制
由于回波与远端信号之间的非线性关系,线性自适应滤波器无法完全去除声回波。通常需要后处理模块来进一步抑制回波。本文提出了一种基于全卷积时域音频分离网络(convt - tasnet)改进的残差回波抑制方法。采用线性声回波抵消系统的残余信号和自适应滤波器的输出组成多流,在保持整个系统较低延迟的同时,更有效地抑制回波。仿真结果验证了该方法在单话和双话情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Strategies for the Control of Complex Motor Skills: Recent Insights into Individual and Joint Actions. A Workflow to Create a High-Quality Protein-Ligand Binding Dataset for Training, Validation, and Prediction Tasks. Generating Novel Brain Morphology by Deforming Learned Templates. Node-reconfiguring multilayer networks of human brain function. Predicting Heteropolymer Phase Separation Using Two-Chain Contact Maps.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1