SVM-Based Parameter Identification for Static Load Modeling

Chong Wang, Zhaoyu Wang, Shanshan Ma
{"title":"SVM-Based Parameter Identification for Static Load Modeling","authors":"Chong Wang, Zhaoyu Wang, Shanshan Ma","doi":"10.1109/TDC.2018.8440334","DOIUrl":null,"url":null,"abstract":"Load modeling is critical to power system studies. This paper proposes a parameter identification technique for the ZIP load model by leveraging the support vector machine (SVM) approach. The ZIP load model is represented as a linear regression expression. To improve the accuracy of parameter identification, one filter, i.e., Hampel filer, is used to preprocess measurements to reduce noises. The data after noise reduction are used as training data of the regression model, which is handled by the SVM approach. Several case studies show that the SVM with filters can identify the parameters for the static load model with high accuracy.","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"9 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Load modeling is critical to power system studies. This paper proposes a parameter identification technique for the ZIP load model by leveraging the support vector machine (SVM) approach. The ZIP load model is represented as a linear regression expression. To improve the accuracy of parameter identification, one filter, i.e., Hampel filer, is used to preprocess measurements to reduce noises. The data after noise reduction are used as training data of the regression model, which is handled by the SVM approach. Several case studies show that the SVM with filters can identify the parameters for the static load model with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的静态载荷建模参数识别
负荷建模是电力系统研究的关键。本文提出了一种利用支持向量机(SVM)方法对ZIP载荷模型进行参数识别的方法。ZIP负荷模型用线性回归表达式表示。为了提高参数识别的精度,采用了一种滤波器,即Hampel滤波器对测量值进行预处理,以降低噪声。将降噪后的数据作为回归模型的训练数据,采用支持向量机方法进行处理。实例研究表明,带滤波器的支持向量机能较好地识别静态负荷模型的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Patterns in Failure Rate of LV Distribution Components Comparison of University Departments Regarding Their Area and Load Profile of an Existing Campus Design of a Flexible AC/DC-Link Aggregate Protection Response of Motor Loads in Commercial Buildings Hardware-in-the-Loop Test Bed and Test Methodology for Microgrid Controller Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1