Quantitative spatiotemporal mapping of thermal runaway propagation rates in lithium-ion cells using cross-correlated Gabor filtering

Anand N. P. Radhakrishnan, M. Buckwell, M. Pham, D. Finegan, A. Rack, G. Hinds, D. Brett, P. Shearing
{"title":"Quantitative spatiotemporal mapping of thermal runaway propagation rates in lithium-ion cells using cross-correlated Gabor filtering","authors":"Anand N. P. Radhakrishnan, M. Buckwell, M. Pham, D. Finegan, A. Rack, G. Hinds, D. Brett, P. Shearing","doi":"10.33774/chemrxiv-2021-jpp7l","DOIUrl":null,"url":null,"abstract":"Abuse testing of lithium-ion batteries is widely performed in order to develop new safety standards and strategies. However, testing methodologies are not standardised across the research community, especially with failure mechanisms being inherently difficult to reproduce. High-speed X-ray radiography is proven to be a valuable tool to capture events occurring during cell failure, but the observations made remain largely qualitative. We have therefore developed a robust image processing toolbox that can quantify, for the first time, the rate of propagation of battery failure mechanisms revealed by high-speed X-ray radiography. Using Gabor filter, the toolbox selectively tracks the electrode structure at the onset of failure. This facilitated the estimation of the displacement of electrodes undergoing abuse via nail penetration, and also the tracking of objects, such as the nail, as it propagates through a cell. Further, by cross-correlating the Gabor signals, we have produced practical, illustrative spatiotemporal maps of the failure events. From these, we can quantify the propagation rates of electrode displacement prior to the onset of thermal runaway. The highest recorded acceleration (≈ 514 mm s-2) was when a nail penetrated a cell radially (perpendicular to the electrodes) as opposed to axially (parallel to the electrodes). The initiation of thermal runaway was also resolved in combination with electrode displacement, which occurred at a lower acceleration (≈ 108 mm s-2). Our assistive toolbox can also be used to study other types of failure mechanisms, extracting otherwise unattainable kinetic data. Ultimately, this tool can be used to not only validate existing theoretical mechanical models, but also standardise battery failure testing procedures.","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-jpp7l","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abuse testing of lithium-ion batteries is widely performed in order to develop new safety standards and strategies. However, testing methodologies are not standardised across the research community, especially with failure mechanisms being inherently difficult to reproduce. High-speed X-ray radiography is proven to be a valuable tool to capture events occurring during cell failure, but the observations made remain largely qualitative. We have therefore developed a robust image processing toolbox that can quantify, for the first time, the rate of propagation of battery failure mechanisms revealed by high-speed X-ray radiography. Using Gabor filter, the toolbox selectively tracks the electrode structure at the onset of failure. This facilitated the estimation of the displacement of electrodes undergoing abuse via nail penetration, and also the tracking of objects, such as the nail, as it propagates through a cell. Further, by cross-correlating the Gabor signals, we have produced practical, illustrative spatiotemporal maps of the failure events. From these, we can quantify the propagation rates of electrode displacement prior to the onset of thermal runaway. The highest recorded acceleration (≈ 514 mm s-2) was when a nail penetrated a cell radially (perpendicular to the electrodes) as opposed to axially (parallel to the electrodes). The initiation of thermal runaway was also resolved in combination with electrode displacement, which occurred at a lower acceleration (≈ 108 mm s-2). Our assistive toolbox can also be used to study other types of failure mechanisms, extracting otherwise unattainable kinetic data. Ultimately, this tool can be used to not only validate existing theoretical mechanical models, but also standardise battery failure testing procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用交叉相关Gabor滤波的锂离子电池热失控传播速率的定量时空映射
为了制定新的安全标准和策略,对锂离子电池进行了广泛的滥用测试。然而,在整个研究界,测试方法并没有标准化,特别是失效机制本身就难以重现。高速x射线摄影被证明是捕获细胞衰竭过程中发生的事件的有价值的工具,但所做的观察在很大程度上仍然是定性的。因此,我们开发了一个强大的图像处理工具箱,可以首次量化高速x射线照相揭示的电池故障机制的传播速率。使用Gabor滤波器,工具箱选择性地跟踪电极结构在失效的开始。这有助于估计通过指甲穿透滥用电极的位移,也有助于跟踪物体,如指甲,因为它在细胞中传播。此外,通过交叉相关的Gabor信号,我们已经产生了实际的,说明性的失效事件的时空图。由此,我们可以量化在热失控发生之前电极位移的传播速率。当钉子沿径向(垂直于电极)而不是轴向(平行于电极)穿透细胞时,记录到的最高加速度(≈514 mm s-2)。在较低的加速度(≈108 mm s-2)下,电极位移也解决了热失控的引发问题。我们的辅助工具箱也可用于研究其他类型的失效机制,提取否则无法获得的动力学数据。最终,该工具不仅可用于验证现有的理论力学模型,还可用于标准化电池故障测试程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Driven Pursuit of Electrochemically Stable 2D Materials with Basal Plane Activity toward Oxygen Electrocatalysis Insensitive cation effect on single-atom Ni catalyst allows selective electrochemical conversion of captured CO2 in universal media Quantitative spatiotemporal mapping of thermal runaway propagation rates in lithium-ion cells using cross-correlated Gabor filtering Optimized Carrier Extraction at Interfaces for 23.6% Efficient Tin–Lead Perovskite Solar Cells Metal-iodine batteries: Achievements, challenges, and future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1