Xiangyu Guo, Shengli Zhang, Liangzhi Kou, C. Yam, T. Frauenheim, Zhongfang Chen, Shiping Huang
In-silico design of efficient electrocatalysts for the oxygen reduction/evolution reaction (ORR/OER) is vital for developing the hydrogen economy. However, practical design principles are still lacking due to the difficulty of...
{"title":"Data-Driven Pursuit of Electrochemically Stable 2D Materials with Basal Plane Activity toward Oxygen Electrocatalysis","authors":"Xiangyu Guo, Shengli Zhang, Liangzhi Kou, C. Yam, T. Frauenheim, Zhongfang Chen, Shiping Huang","doi":"10.1039/d3ee01723k","DOIUrl":"https://doi.org/10.1039/d3ee01723k","url":null,"abstract":"In-silico design of efficient electrocatalysts for the oxygen reduction/evolution reaction (ORR/OER) is vital for developing the hydrogen economy. However, practical design principles are still lacking due to the difficulty of...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83578314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-18DOI: 10.21203/rs.3.rs-1310811/v1
Jae Hyung Kim, Hyun-Ju Jang, W. Choi, H. Yun, Eunbyoul Lee, Dongjin Kim, Ji Won Kim, Si Young Lee, Y. Hwang
The direct electroconversion of captured CO2 is attracting attention as an alternative to the current energy-demanding CO2 separation processes. In conventional capturing media, the reaction inevitably takes place in the presence of bulky ammonium, leading to steric hindrance and low CO selectivity. Here, for the first time, we present a single atom Ni catalyst (Ni–N/C) exhibits superior activity for the electroconversion of captured CO2, without the need for additives. In a CO2-captured monoethanolamine-based electrolyte, Ni–N/C achieves a notably high CO selectivity of 64.9% at −50 mA cm−2 integrated with a membrane electrode assembly. We also propose that Ni–N/C demonstrates weak cation sensitivity to the CO2 reduction reaction, maintaining high CO production activity in various capturing solutions, while Ag shows a gradual decrease depending on the bulkiness of the amine. These trends provide insights into selective catalyst design for the electroconversion of captured CO2 in universal media.
捕获的二氧化碳的直接电转化作为目前高耗能的二氧化碳分离过程的替代方案正引起人们的注意。在传统的捕获介质中,反应不可避免地发生在存在大量铵的情况下,导致空间位阻和低CO选择性。在这里,我们首次提出了一种单原子镍催化剂(Ni - n /C),在不需要添加剂的情况下,对捕获的二氧化碳表现出优异的电转化活性。在基于co2捕获的单乙醇胺电解质中,Ni-N /C在−50 mA cm−2下具有64.9%的高CO选择性。我们还提出,Ni-N /C对CO2还原反应表现出弱的阳离子敏感性,在各种捕获溶液中保持较高的CO生成活性,而Ag则根据胺的体积逐渐降低。这些趋势为在通用介质中捕获的二氧化碳的电转化提供了选择性催化剂设计的见解。
{"title":"Insensitive cation effect on single-atom Ni catalyst allows selective electrochemical conversion of captured CO2 in universal media","authors":"Jae Hyung Kim, Hyun-Ju Jang, W. Choi, H. Yun, Eunbyoul Lee, Dongjin Kim, Ji Won Kim, Si Young Lee, Y. Hwang","doi":"10.21203/rs.3.rs-1310811/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-1310811/v1","url":null,"abstract":"\u0000 The direct electroconversion of captured CO2 is attracting attention as an alternative to the current energy-demanding CO2 separation processes. In conventional capturing media, the reaction inevitably takes place in the presence of bulky ammonium, leading to steric hindrance and low CO selectivity. Here, for the first time, we present a single atom Ni catalyst (Ni–N/C) exhibits superior activity for the electroconversion of captured CO2, without the need for additives. In a CO2-captured monoethanolamine-based electrolyte, Ni–N/C achieves a notably high CO selectivity of 64.9% at −50 mA cm−2 integrated with a membrane electrode assembly. We also propose that Ni–N/C demonstrates weak cation sensitivity to the CO2 reduction reaction, maintaining high CO production activity in various capturing solutions, while Ag shows a gradual decrease depending on the bulkiness of the amine. These trends provide insights into selective catalyst design for the electroconversion of captured CO2 in universal media.","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81679194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-02DOI: 10.33774/chemrxiv-2021-jpp7l
Anand N. P. Radhakrishnan, M. Buckwell, M. Pham, D. Finegan, A. Rack, G. Hinds, D. Brett, P. Shearing
Abuse testing of lithium-ion batteries is widely performed in order to develop new safety standards and strategies. However, testing methodologies are not standardised across the research community, especially with failure mechanisms being inherently difficult to reproduce. High-speed X-ray radiography is proven to be a valuable tool to capture events occurring during cell failure, but the observations made remain largely qualitative. We have therefore developed a robust image processing toolbox that can quantify, for the first time, the rate of propagation of battery failure mechanisms revealed by high-speed X-ray radiography. Using Gabor filter, the toolbox selectively tracks the electrode structure at the onset of failure. This facilitated the estimation of the displacement of electrodes undergoing abuse via nail penetration, and also the tracking of objects, such as the nail, as it propagates through a cell. Further, by cross-correlating the Gabor signals, we have produced practical, illustrative spatiotemporal maps of the failure events. From these, we can quantify the propagation rates of electrode displacement prior to the onset of thermal runaway. The highest recorded acceleration (≈ 514 mm s-2) was when a nail penetrated a cell radially (perpendicular to the electrodes) as opposed to axially (parallel to the electrodes). The initiation of thermal runaway was also resolved in combination with electrode displacement, which occurred at a lower acceleration (≈ 108 mm s-2). Our assistive toolbox can also be used to study other types of failure mechanisms, extracting otherwise unattainable kinetic data. Ultimately, this tool can be used to not only validate existing theoretical mechanical models, but also standardise battery failure testing procedures.
为了制定新的安全标准和策略,对锂离子电池进行了广泛的滥用测试。然而,在整个研究界,测试方法并没有标准化,特别是失效机制本身就难以重现。高速x射线摄影被证明是捕获细胞衰竭过程中发生的事件的有价值的工具,但所做的观察在很大程度上仍然是定性的。因此,我们开发了一个强大的图像处理工具箱,可以首次量化高速x射线照相揭示的电池故障机制的传播速率。使用Gabor滤波器,工具箱选择性地跟踪电极结构在失效的开始。这有助于估计通过指甲穿透滥用电极的位移,也有助于跟踪物体,如指甲,因为它在细胞中传播。此外,通过交叉相关的Gabor信号,我们已经产生了实际的,说明性的失效事件的时空图。由此,我们可以量化在热失控发生之前电极位移的传播速率。当钉子沿径向(垂直于电极)而不是轴向(平行于电极)穿透细胞时,记录到的最高加速度(≈514 mm s-2)。在较低的加速度(≈108 mm s-2)下,电极位移也解决了热失控的引发问题。我们的辅助工具箱也可用于研究其他类型的失效机制,提取否则无法获得的动力学数据。最终,该工具不仅可用于验证现有的理论力学模型,还可用于标准化电池故障测试程序。
{"title":"Quantitative spatiotemporal mapping of thermal runaway propagation rates in lithium-ion cells using cross-correlated Gabor filtering","authors":"Anand N. P. Radhakrishnan, M. Buckwell, M. Pham, D. Finegan, A. Rack, G. Hinds, D. Brett, P. Shearing","doi":"10.33774/chemrxiv-2021-jpp7l","DOIUrl":"https://doi.org/10.33774/chemrxiv-2021-jpp7l","url":null,"abstract":"Abuse testing of lithium-ion batteries is widely performed in order to develop new safety standards and strategies. However, testing methodologies are not standardised across the research community, especially with failure mechanisms being inherently difficult to reproduce. High-speed X-ray radiography is proven to be a valuable tool to capture events occurring during cell failure, but the observations made remain largely qualitative. We have therefore developed a robust image processing toolbox that can quantify, for the first time, the rate of propagation of battery failure mechanisms revealed by high-speed X-ray radiography. Using Gabor filter, the toolbox selectively tracks the electrode structure at the onset of failure. This facilitated the estimation of the displacement of electrodes undergoing abuse via nail penetration, and also the tracking of objects, such as the nail, as it propagates through a cell. Further, by cross-correlating the Gabor signals, we have produced practical, illustrative spatiotemporal maps of the failure events. From these, we can quantify the propagation rates of electrode displacement prior to the onset of thermal runaway. The highest recorded acceleration (≈ 514 mm s-2) was when a nail penetrated a cell radially (perpendicular to the electrodes) as opposed to axially (parallel to the electrodes). The initiation of thermal runaway was also resolved in combination with electrode displacement, which occurred at a lower acceleration (≈ 108 mm s-2). Our assistive toolbox can also be used to study other types of failure mechanisms, extracting otherwise unattainable kinetic data. Ultimately, this tool can be used to not only validate existing theoretical mechanical models, but also standardise battery failure testing procedures.","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88531590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-24DOI: 10.21203/RS.3.RS-727823/V1
Shuaifeng Hu, Kento Otsuka, R. Murdey, Tomoya Nakamura, Minh Anh Truong, Takumi Yamada, Taketo Handa, K. Matsuda, Kyohei Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, A. Wakamiya
Carrier extraction is a key issue which limits the efficiency of perovskite solar cells. In this work, carrier extraction is improved by modifying the perovskite layers with a combination of ethylenediammonium diiodide post-treatment and glycine hydrochloride additive. Ethylenediammonium dications primarily affect the top surface of the perovskite films, while glycinium cations preferentially accumulate at the bottom region. The top and bottom interface modifications improve the crystallinity of the perovskite films and lower the density of electrical traps via surface passivation effects, resulting in long charge carrier lifetimes. The orientated aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces result in the formation of surface dipoles, which facilitate charge extraction. The performance of the treated solar cell devices also increases. The fill factor rose to 0.82, and the power conversion efficiency reaches 23.6% (23.1% certified). The open circuit voltage reaches 0.91 V, just 0.06 V below the Shockley–Queisser limit. The unencapsulated devices also show improved stability under AM 1.5G, retaining over 80% of the initial efficiency after 200 h continuous operation in inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies up to 21.0%.
{"title":"Optimized Carrier Extraction at Interfaces for 23.6% Efficient Tin–Lead Perovskite Solar Cells","authors":"Shuaifeng Hu, Kento Otsuka, R. Murdey, Tomoya Nakamura, Minh Anh Truong, Takumi Yamada, Taketo Handa, K. Matsuda, Kyohei Nakano, A. Sato, K. Marumoto, K. Tajima, Y. Kanemitsu, A. Wakamiya","doi":"10.21203/RS.3.RS-727823/V1","DOIUrl":"https://doi.org/10.21203/RS.3.RS-727823/V1","url":null,"abstract":"\u0000 Carrier extraction is a key issue which limits the efficiency of perovskite solar cells. In this work, carrier extraction is improved by modifying the perovskite layers with a combination of ethylenediammonium diiodide post-treatment and glycine hydrochloride additive. Ethylenediammonium dications primarily affect the top surface of the perovskite films, while glycinium cations preferentially accumulate at the bottom region. The top and bottom interface modifications improve the crystallinity of the perovskite films and lower the density of electrical traps via surface passivation effects, resulting in long charge carrier lifetimes. The orientated aggregation of the ethylenediammonium and glycinium cations at the charge collection interfaces result in the formation of surface dipoles, which facilitate charge extraction. The performance of the treated solar cell devices also increases. The fill factor rose to 0.82, and the power conversion efficiency reaches 23.6% (23.1% certified). The open circuit voltage reaches 0.91 V, just 0.06 V below the Shockley–Queisser limit. The unencapsulated devices also show improved stability under AM 1.5G, retaining over 80% of the initial efficiency after 200 h continuous operation in inert atmosphere. Our strategy is also successfully applied to centimeter-scale devices, with efficiencies up to 21.0%.","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75290294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Doudou Zhang, Haobo Li, Haijao Lu, Zongyou Yin, Z. Fusco, Asim Riaz, Karsten Reuter, Kylie Catchpole, S. Karuturi
Ternary metal (hydro)oxide amorphous catalysts are attractive oxygen evolution reaction (OER) catalysts due to their high performance and cost-effectiveness, but a fundamental understanding of their structure-property relationships remains elusive. Herein,...
{"title":"Unlocking the performance of ternary metal (hydro)oxide amorphous catalysts via data-driven active-site engineering","authors":"Doudou Zhang, Haobo Li, Haijao Lu, Zongyou Yin, Z. Fusco, Asim Riaz, Karsten Reuter, Kylie Catchpole, S. Karuturi","doi":"10.1039/d3ee01981k","DOIUrl":"https://doi.org/10.1039/d3ee01981k","url":null,"abstract":"Ternary metal (hydro)oxide amorphous catalysts are attractive oxygen evolution reaction (OER) catalysts due to their high performance and cost-effectiveness, but a fundamental understanding of their structure-property relationships remains elusive. Herein,...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85973342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kangkang Zhou, Kaihu Xian, Ruijie Ma, Junwei Liu, Mengyuan Gao, Saimeng Li, Tao Liu, Yu Chen, Yanhou Geng, Long Ye
With the rapid emergence of new polymer acceptors, the photovoltaic performance of all-polymer solar cells (all-PSCs) has been greatly improved. However, how to rationally design multicomponent active layers for thermally...
{"title":"Correlating Miscibility, Mechanical Parameters, and Stability of Ternary Polymer Blends for High-Performance Solar Cells","authors":"Kangkang Zhou, Kaihu Xian, Ruijie Ma, Junwei Liu, Mengyuan Gao, Saimeng Li, Tao Liu, Yu Chen, Yanhou Geng, Long Ye","doi":"10.1039/d3ee01683h","DOIUrl":"https://doi.org/10.1039/d3ee01683h","url":null,"abstract":"With the rapid emergence of new polymer acceptors, the photovoltaic performance of all-polymer solar cells (all-PSCs) has been greatly improved. However, how to rationally design multicomponent active layers for thermally...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74036751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leiqian Zhang, Hele Guo, Wei Zong, Yunpeng Huang, Jiajia Huang, Guanjie He, Tianxi Liu, Johan Hofkens, Feili Lai
Metal-iodine batteries (MIBs) are becoming increasingly popular due to intrincis advantages, such as a limited number of reaction intermediates, high electrochemical reversibility, eco-friendliness, safety, and managable cost. This review details...
{"title":"Metal-iodine batteries: Achievements, challenges, and future","authors":"Leiqian Zhang, Hele Guo, Wei Zong, Yunpeng Huang, Jiajia Huang, Guanjie He, Tianxi Liu, Johan Hofkens, Feili Lai","doi":"10.1039/d3ee01677c","DOIUrl":"https://doi.org/10.1039/d3ee01677c","url":null,"abstract":"Metal-iodine batteries (MIBs) are becoming increasingly popular due to intrincis advantages, such as a limited number of reaction intermediates, high electrochemical reversibility, eco-friendliness, safety, and managable cost. This review details...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73192744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaolin You, Ruoyu Wu, Xinhai Yuan, Jilei Ye, Lili Liu, L. Fu, Peng Han, Yuping Wu
Aqueous Zn-ion batteries (AZIBs) present tremendous promise for large-scale energy storage owing to their intrinsically high safety, low cost and environmental friendliness. However, a huge challenge is the freezing of...
{"title":"Inexpensive Electrolyte with Double-site Hydrogen Bonding and Regulated Zn2+ Solvation Structure for Aqueous Zn-Ion Batteries Capable of High-rate and Ultra-long Low-Temperature Operation","authors":"Chaolin You, Ruoyu Wu, Xinhai Yuan, Jilei Ye, Lili Liu, L. Fu, Peng Han, Yuping Wu","doi":"10.1039/d3ee01741a","DOIUrl":"https://doi.org/10.1039/d3ee01741a","url":null,"abstract":"Aqueous Zn-ion batteries (AZIBs) present tremendous promise for large-scale energy storage owing to their intrinsically high safety, low cost and environmental friendliness. However, a huge challenge is the freezing of...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81097810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perovskite/Cu(InGa)Se2 (PSC/CIGS) tandem configuration is an attractive way to achieve an ultra-high efficient and cost-effective all-thin-film solar cell. However, the imbalanced efficiencies of the constituent sub-cells and the bandgap mismatch...
{"title":"Over 28% Efficiency Perovskite/Cu(InGa)Se2 Tandem Solar Cells: Highly Efficient Sub-cells and Their Bandgap Matching","authors":"Xinxing Liu, Junjun Zhang, Liting Tang, Junbo Gong, Wang Li, Zexin Tu, Yanyan Li, Ruiming Li, Xuzhi Hu, C.C. Shen, He Wang, Zhiping Wang, Qianqian Lin, G. Fang, Sheng Wang, Chang Liu, Zengming Zhang, Jianmin Li, Xudong Xiao","doi":"10.1039/d3ee00869j","DOIUrl":"https://doi.org/10.1039/d3ee00869j","url":null,"abstract":"Perovskite/Cu(InGa)Se2 (PSC/CIGS) tandem configuration is an attractive way to achieve an ultra-high efficient and cost-effective all-thin-film solar cell. However, the imbalanced efficiencies of the constituent sub-cells and the bandgap mismatch...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80928836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huabin Zhang, Kuo‐Wei Huang, F. Raziq, Jinhua Ye, Hong Pang, Bin Chang, Sibo Wang
Electrocatalytic CO2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C2+) compounds with higher energy...
{"title":"Electrochemical Reduction of Carbon Dioxide to Multicarbon (C2+) Products: Challenges and Perspectives","authors":"Huabin Zhang, Kuo‐Wei Huang, F. Raziq, Jinhua Ye, Hong Pang, Bin Chang, Sibo Wang","doi":"10.1039/d3ee00964e","DOIUrl":"https://doi.org/10.1039/d3ee00964e","url":null,"abstract":"Electrocatalytic CO2 reduction has been developed as a promising and attractive strategy to achieve carbon neutrality for sustainable chemical production. Among various reduction products, multi-carbon (C2+) compounds with higher energy...","PeriodicalId":11674,"journal":{"name":"Energy & Environmental Science","volume":"41 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78476067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}