{"title":"Effect of two -dimensional fractal rough surface on the waveguide power dissipation","authors":"Na Li","doi":"10.1109/INEC.2010.5424803","DOIUrl":null,"url":null,"abstract":"An improved two-dimensional fractal analysis for internal rough surface of waveguide was presented in this paper to investigate the transmission power dissipation. Two approximate formulas were deduced to calculate the power dissipation of whole and partly roughness. After the simulation experiment by a BJ110 waveguide of the diplex filter, the results indicated that the surface density had little influence on power dissipation, while the influence of fractal dimension was very strong. Following the increase of surface roughness, the power dissipation would be also increased, and the maximum of the increase of power dissipation was 1.8 times than that of smooth surface.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"38 1","pages":"1445-1446"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An improved two-dimensional fractal analysis for internal rough surface of waveguide was presented in this paper to investigate the transmission power dissipation. Two approximate formulas were deduced to calculate the power dissipation of whole and partly roughness. After the simulation experiment by a BJ110 waveguide of the diplex filter, the results indicated that the surface density had little influence on power dissipation, while the influence of fractal dimension was very strong. Following the increase of surface roughness, the power dissipation would be also increased, and the maximum of the increase of power dissipation was 1.8 times than that of smooth surface.