P. García-Sánchez, A. Tonda, Giovanni Squillero, A. García, J. J. M. Guervós
{"title":"Evolutionary deckbuilding in hearthstone","authors":"P. García-Sánchez, A. Tonda, Giovanni Squillero, A. García, J. J. M. Guervós","doi":"10.1109/CIG.2016.7860426","DOIUrl":null,"url":null,"abstract":"One of the most notable features of collectible card games is deckbuilding, that is, defining a personalized deck before the real game. Deckbuilding is a challenge that involves a big and rugged search space, with different and unpredictable behaviour after simple card changes and even hidden information. In this paper, we explore the possibility of automated deckbuilding: a genetic algorithm is applied to the task, with the evaluation delegated to a game simulator that tests every potential deck against a varied and representative range of human-made decks. In these preliminary experiments, the approach has proven able to create quite effective decks, a promising result that proves that, even in this challenging environment, evolutionary algorithms can find good solutions.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
One of the most notable features of collectible card games is deckbuilding, that is, defining a personalized deck before the real game. Deckbuilding is a challenge that involves a big and rugged search space, with different and unpredictable behaviour after simple card changes and even hidden information. In this paper, we explore the possibility of automated deckbuilding: a genetic algorithm is applied to the task, with the evaluation delegated to a game simulator that tests every potential deck against a varied and representative range of human-made decks. In these preliminary experiments, the approach has proven able to create quite effective decks, a promising result that proves that, even in this challenging environment, evolutionary algorithms can find good solutions.