S. Saini, A. Yonamine, R. Nishio, I. Matsumoto, T. Yabuki, K. Miyazaki
{"title":"Hybrid-halide perovskite thin films for thermoelectric application","authors":"S. Saini, A. Yonamine, R. Nishio, I. Matsumoto, T. Yabuki, K. Miyazaki","doi":"10.1109/PowerMEMS49317.2019.P5-11","DOIUrl":null,"url":null,"abstract":"Thermoelectric effect can be a promising candidate as a sustainable energy source for internet of things devices. In this regards, thin films of organic-inorganic hybrid halide-perovskites, Methylamonium tin iodide, were fabricated by spin coating technique on a glass substrate. Thin films were structurally and chemically characterized by x-ray diffraction pattern and scanning electron microscope. Thermoelectric parameters were measured near room temperature. Thin films heated for 5 min at 100°C shows the best performance with electrical conductivity 2.4 S/cm, Seebeck coefficient $65 \\mu V/K$ and power factor of $1.0 \\mu W/m \\cdot K^{2}$. Thermoelectric performance from these hybrid-halide perovskite will help for further development of direct thermal energy harvesting devices near room temperature.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"40 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.P5-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric effect can be a promising candidate as a sustainable energy source for internet of things devices. In this regards, thin films of organic-inorganic hybrid halide-perovskites, Methylamonium tin iodide, were fabricated by spin coating technique on a glass substrate. Thin films were structurally and chemically characterized by x-ray diffraction pattern and scanning electron microscope. Thermoelectric parameters were measured near room temperature. Thin films heated for 5 min at 100°C shows the best performance with electrical conductivity 2.4 S/cm, Seebeck coefficient $65 \mu V/K$ and power factor of $1.0 \mu W/m \cdot K^{2}$. Thermoelectric performance from these hybrid-halide perovskite will help for further development of direct thermal energy harvesting devices near room temperature.