Evaluation of die to organic laminate to PCB interconnects up to 50GHz

S. Bulumulla, K. Ramachandran
{"title":"Evaluation of die to organic laminate to PCB interconnects up to 50GHz","authors":"S. Bulumulla, K. Ramachandran","doi":"10.4071/2380-4505-2019.1.000223","DOIUrl":null,"url":null,"abstract":"\n Ceramic substrates have traditionally been used in RF and microwave packaging applications because of the electrical properties at high frequencies. However, there is significant interest in using organic laminates due to its tighter wiring ground rules for high density packaging and lower cost of fabrication. The high frequency performance of interconnection from die to PCB using an organic packaging substrate has not yet been studied in detail. In this work, the interconnect performance of die to organic laminate to PCB up to 50 GHz was modeled and characterized using a test vehicle assembly. The test vehicle was specifically designed with test pads to characterize the interconnect performance at multiple levels of interconnection. A comparison study using a ceramic package substrate was also carried out. The modeling and hardware testing results from this study showed −3dB bandwidth of more than 50GHz for printed circuit board (PCB) to organic laminate and a bandwidth of 40GHz for the die to organic laminate to PCB interconnection. The results from this study showed that the organic laminate demonstrated a high frequency performance comparable to that of the ceramic substrate, which makes it suitable as a packaging substrate material for high frequency applications.","PeriodicalId":14363,"journal":{"name":"International Symposium on Microelectronics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Microelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2019.1.000223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic substrates have traditionally been used in RF and microwave packaging applications because of the electrical properties at high frequencies. However, there is significant interest in using organic laminates due to its tighter wiring ground rules for high density packaging and lower cost of fabrication. The high frequency performance of interconnection from die to PCB using an organic packaging substrate has not yet been studied in detail. In this work, the interconnect performance of die to organic laminate to PCB up to 50 GHz was modeled and characterized using a test vehicle assembly. The test vehicle was specifically designed with test pads to characterize the interconnect performance at multiple levels of interconnection. A comparison study using a ceramic package substrate was also carried out. The modeling and hardware testing results from this study showed −3dB bandwidth of more than 50GHz for printed circuit board (PCB) to organic laminate and a bandwidth of 40GHz for the die to organic laminate to PCB interconnection. The results from this study showed that the organic laminate demonstrated a high frequency performance comparable to that of the ceramic substrate, which makes it suitable as a packaging substrate material for high frequency applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估高达50GHz的有机层压板与PCB互连
由于陶瓷基板在高频下的电性能,传统上用于射频和微波封装应用。然而,由于其更严格的布线基本规则用于高密度封装和更低的制造成本,因此对使用有机层压板有很大的兴趣。使用有机封装基板从芯片到PCB互连的高频性能尚未得到详细的研究。在这项工作中,使用测试车辆组件对高达50 GHz的有机层压板与PCB的互连性能进行了建模和表征。测试车辆专门设计了测试平台,以表征多级互连的互连性能。采用陶瓷封装衬底进行了对比研究。本研究的建模和硬件测试结果表明,印刷电路板(PCB)到有机层压板的- 3dB带宽超过50GHz,芯片到有机层压板到PCB互连的带宽为40GHz。本研究结果表明,有机层压板表现出与陶瓷基板相当的高频性能,这使得它适合作为高频应用的封装基板材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced Packaging Technology for Novel 1-dimensional and 2-dimensional VCSEL Arrays The Pivotal Role of Uniformity of Electrolytic Deposition Processes to Improve the Reliability of Advanced Packaging Enhancing the Paste Release on 55μm pads with Water-Soluble Type 7 SAC305 Solder Paste for High Density SIP Application Coronavirus, chip boom, and supply shortage: The new normal for global semiconductor manufacturing Lithography Solutions for Submicron Panel-Level Packaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1