A new popularity-based data replication strategy in cloud systems

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2021-01-01 DOI:10.3233/mgs-210348
Abdenour Lazeb, R. Mokadem, Ghalem Belalem
{"title":"A new popularity-based data replication strategy in cloud systems","authors":"Abdenour Lazeb, R. Mokadem, Ghalem Belalem","doi":"10.3233/mgs-210348","DOIUrl":null,"url":null,"abstract":"Data-intensive cloud computing systems are growing year by year due to the increasing volume of data. In this context, data replication technique is frequently used to ensure a Quality of service, e.g., performance. However, most of the existing data replication strategies just reproduce the same number of replicas on some nodes, which is certainly not enough for more accurate results. To solve these problems, we propose a new data Replication and Placement strategy based on popularity of User Requests Group (RPURG). It aims to reduce the tenant response time and maximize benefit for the cloud provider while satisfying the Service Level Agreement (SLA). We demonstrate the validity of our strategy in a performance evaluation study. The result of experimentation shown robustness of RPURG.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-210348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Data-intensive cloud computing systems are growing year by year due to the increasing volume of data. In this context, data replication technique is frequently used to ensure a Quality of service, e.g., performance. However, most of the existing data replication strategies just reproduce the same number of replicas on some nodes, which is certainly not enough for more accurate results. To solve these problems, we propose a new data Replication and Placement strategy based on popularity of User Requests Group (RPURG). It aims to reduce the tenant response time and maximize benefit for the cloud provider while satisfying the Service Level Agreement (SLA). We demonstrate the validity of our strategy in a performance evaluation study. The result of experimentation shown robustness of RPURG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云系统中基于流行度的新数据复制策略
由于数据量的增加,数据密集型云计算系统正在逐年增长。在这种情况下,经常使用数据复制技术来确保服务质量,例如性能。但是,大多数现有的数据复制策略只是在某些节点上复制相同数量的副本,这显然不足以获得更准确的结果。为了解决这些问题,我们提出了一种基于用户请求组(RPURG)流行度的数据复制和放置策略。它旨在减少租户响应时间,并在满足服务水平协议(SLA)的同时最大化云提供商的利益。我们在绩效评估研究中证明了我们策略的有效性。实验结果表明了RPURG的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Blockchain applications for Internet of Things (IoT): A review Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image Optimization enabled elastic scaling in cloud based on predicted load for resource management Geese jellyfish search optimization trained deep learning for multiclass plant disease detection using leaf images Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1