Application of artificial intelligence methods for bovine gender prediction

Ali Öztürk, N. Allahverdi, Fatih Saday
{"title":"Application of artificial intelligence methods for bovine gender prediction","authors":"Ali Öztürk, N. Allahverdi, Fatih Saday","doi":"10.31127/TUJE.807019","DOIUrl":null,"url":null,"abstract":"This study investigates determining the gender of calves using some artificial intelligence (AI) techniques. Gender identification is important in animal breeding, focusing on the desired outcome and planning. The data used to determine the gender of calves were the speed, magnitude, and density of the bull's semen. The analysis of the related studies showed that there was not a study on gender prediction of bovine with the application of AI methods. In this study, fuzzy logic (FL), artificial neural networks (ANN), support vector machines (SVM), and random forests (RF) were used. The efficiency of these approaches was verified by statistical analysis parameters such as accuracy, specificity, sensitivity (recall), precision, and F-score. The FL, ANN, SVM, and RF models had 84%, 96%, 97%, 99% accuracy, 93.75%, 96.88%, 100%, 100% sensitivity, 66.66%, 94.44%, 92.31%, 97.30% specificity, 83.33%, 96.88%, 95.31%, 98.44% precision results, respectively. Application of these AI techniques for prediction bovine gender proves that these methods may be used by semen breeders as supporting information tools. In particular, it was observed that the RF method yielded the highest accuracy results.","PeriodicalId":23377,"journal":{"name":"Turkish Journal of Engineering and Environmental Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31127/TUJE.807019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study investigates determining the gender of calves using some artificial intelligence (AI) techniques. Gender identification is important in animal breeding, focusing on the desired outcome and planning. The data used to determine the gender of calves were the speed, magnitude, and density of the bull's semen. The analysis of the related studies showed that there was not a study on gender prediction of bovine with the application of AI methods. In this study, fuzzy logic (FL), artificial neural networks (ANN), support vector machines (SVM), and random forests (RF) were used. The efficiency of these approaches was verified by statistical analysis parameters such as accuracy, specificity, sensitivity (recall), precision, and F-score. The FL, ANN, SVM, and RF models had 84%, 96%, 97%, 99% accuracy, 93.75%, 96.88%, 100%, 100% sensitivity, 66.66%, 94.44%, 92.31%, 97.30% specificity, 83.33%, 96.88%, 95.31%, 98.44% precision results, respectively. Application of these AI techniques for prediction bovine gender proves that these methods may be used by semen breeders as supporting information tools. In particular, it was observed that the RF method yielded the highest accuracy results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能方法在牛性别预测中的应用
本研究探讨了使用一些人工智能(AI)技术来确定小牛的性别。性别鉴定在动物育种中很重要,重点是期望的结果和计划。用来确定小牛性别的数据是公牛精液的速度、数量和密度。对相关研究的分析表明,目前还没有应用人工智能方法进行牛性别预测的研究。本研究采用模糊逻辑(FL)、人工神经网络(ANN)、支持向量机(SVM)和随机森林(RF)等方法。这些方法的有效性通过准确性、特异性、灵敏度(召回率)、精密度和f分数等统计分析参数得到验证。FL、ANN、SVM和RF模型的准确率分别为84%、96%、97%、99%,灵敏度为93.75%、96.88%、100%、100%,特异性为66.66%、94.44%、92.31%、97.30%,准确率为83.33%、96.88%、95.31%、98.44%。这些人工智能技术在预测牛性别方面的应用证明,这些方法可能被精液育种者用作辅助信息工具。特别是,观察到射频方法产生的结果精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solution‐Based Fabrication of Copper Oxide Thin Film Influence of Transition Metal (Cobalt) Doping on Structural, Morphological, Electrical, and Optical Properties Optimal Power Flow Analysis with Circulatory System-Based Optimization Algorithm Counterface Soil Type and Loading Condition Effects on Granular/Cohesive Soil – Geofoam Interface Shear Behavior Comparison of CNN-Based Methods for Yoga Pose Classification Prediction of elevation points using three different heuristic regression techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1