An optimization approach for automated unit test generation tools using multi-objective evolutionary algorithms

Samar Ali Abdallah , Ramadan Moawad , Esaam Eldeen Fawzy
{"title":"An optimization approach for automated unit test generation tools using multi-objective evolutionary algorithms","authors":"Samar Ali Abdallah ,&nbsp;Ramadan Moawad ,&nbsp;Esaam Eldeen Fawzy","doi":"10.1016/j.fcij.2018.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>High code coverage is measured by the process of software testing typically using automatic test case generation tools. This standard approach is usually used for unit testing to improve software reliability. Most automated test case generation tools focused just on code coverage without considering its cost and redundancy between generated test cases. To obtain optimized high code coverage and to ensure minimum cost and redundancy a Multi-Objectives Evolutionary Algorithm approach (MOEA) is set in motion. An efficient approach is proposed and applied to different algorithms from MOEA Frame from the separate library with three fitness functions for Coverage, Cost, and Redundancy. Four MEOA algorithms have been proven reliable to reach above the 90 percent code coverage: NSGAII, Random, SMSEMOA,v and ε-MOEA. These four algorithms are the key factors behind the MOEA approach.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 2","pages":"Pages 178-190"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2018.02.004","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728818300072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

High code coverage is measured by the process of software testing typically using automatic test case generation tools. This standard approach is usually used for unit testing to improve software reliability. Most automated test case generation tools focused just on code coverage without considering its cost and redundancy between generated test cases. To obtain optimized high code coverage and to ensure minimum cost and redundancy a Multi-Objectives Evolutionary Algorithm approach (MOEA) is set in motion. An efficient approach is proposed and applied to different algorithms from MOEA Frame from the separate library with three fitness functions for Coverage, Cost, and Redundancy. Four MEOA algorithms have been proven reliable to reach above the 90 percent code coverage: NSGAII, Random, SMSEMOA,v and ε-MOEA. These four algorithms are the key factors behind the MOEA approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多目标进化算法的自动化单元测试生成工具的优化方法
高代码覆盖率是通过软件测试过程来衡量的,通常使用自动测试用例生成工具。这种标准方法通常用于单元测试,以提高软件的可靠性。大多数自动化的测试用例生成工具只关注代码覆盖率,而不考虑它的成本和生成的测试用例之间的冗余。为了获得优化的高代码覆盖率,并确保最小的成本和冗余,提出了一种多目标进化算法(MOEA)。提出了一种有效的方法,并将其应用于不同的MOEA框架算法,该算法具有覆盖、成本和冗余三个适应度函数。四种MEOA算法已被证明可以可靠地达到90%以上的代码覆盖率:NSGAII, Random, SMSEMOA,v和ε-MOEA。这四种算法是MOEA方法背后的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relationship between E-CRM, Service Quality, Customer Satisfaction, Trust, and Loyalty in banking Industry Enhancing query processing on stock market cloud-based database Crow search algorithm with time varying flight length Strategies for feature selection A Framework to Enhance the International Competitive Advantage of Information Technology Graduates A Literature Review on Agile Methodologies Quality, eXtreme Programming and SCRUM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1