Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY Annales De L Institut Henri Poincare-probabilites Et Statistiques Pub Date : 2014-07-20 DOI:10.1214/15-AIHP678
Jingsheng Ma, Zhenjie Ren, N. Touzi, Jianfeng Zhang
{"title":"Large deviations for non-Markovian diffusions and a path-dependent Eikonal equation","authors":"Jingsheng Ma, Zhenjie Ren, N. Touzi, Jianfeng Zhang","doi":"10.1214/15-AIHP678","DOIUrl":null,"url":null,"abstract":"This paper provides a large deviation principle for Non-Markovian, Brownian motion driven stochastic differential equations with random coefficients. Similar to Gao & Liu [19], this extends the corresponding results collected in Freidlin & Wentzell [18]. However, we use a different line of argument, adapting the PDE method of Fleming [14] and Evans & Ishii [10] to the pathdependent case, by using backward stochastic differential techniques. Similar to the Markovian case, we obtain a characterization of the action function as the unique bounded solution of a path-dependent version of the Eikonal equation. Finally, we provide an application to the short maturity asymptotics of the implied volatility surface in financial mathematics.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"15 1","pages":"1196-1216"},"PeriodicalIF":1.2000,"publicationDate":"2014-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 11

Abstract

This paper provides a large deviation principle for Non-Markovian, Brownian motion driven stochastic differential equations with random coefficients. Similar to Gao & Liu [19], this extends the corresponding results collected in Freidlin & Wentzell [18]. However, we use a different line of argument, adapting the PDE method of Fleming [14] and Evans & Ishii [10] to the pathdependent case, by using backward stochastic differential techniques. Similar to the Markovian case, we obtain a characterization of the action function as the unique bounded solution of a path-dependent version of the Eikonal equation. Finally, we provide an application to the short maturity asymptotics of the implied volatility surface in financial mathematics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非马尔可夫扩散的大偏差和路径相关的Eikonal方程
本文给出了非马尔可夫布朗运动驱动的随机系数随机微分方程的大偏差原理。与Gao & Liu[19]类似,这扩展了Freidlin & Wentzell[18]收集的相应结果。然而,我们使用了不同的观点,通过使用倒向随机微分技术,将Fleming[14]和Evans & Ishii[10]的PDE方法应用于路径依赖的情况。与马尔可夫情况类似,我们得到了作用函数作为路径依赖的Eikonal方程的唯一有界解的一个表征。最后,给出了隐含波动率曲面的短期渐近性在金融数学中的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
期刊最新文献
Limit distributions of branching Markov chains Tightness of discrete Gibbsian line ensembles with exponential interaction Hamiltonians Functional CLT for non-Hermitian random matrices Reflecting Brownian motion in generalized parabolic domains: Explosion and superdiffusivity From the asymmetric simple exclusion processes to the stationary measures of the KPZ fixed point on an interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1