{"title":"Performance of Biocomposite Materials Reinforced by Hydroxyapatite and Seashell Nanoparticles for Bone Replacement","authors":"A. Hadi, M. R. Mohammed","doi":"10.1155/2022/9156522","DOIUrl":null,"url":null,"abstract":"Bone defects and disorders include trauma, osteonecrosis, osteoporosis, bone tumours, arthritis rheumatoid, osteosarcoma, and iatrogenic injury. Obtaining a composite material with characteristics that mimic what bones in the human body have is a vital target for the purpose of replacing or repairing damaged bones. The key objective of this study was to develop a composite having mechanical and biological properties that resemble to a large extent native bone features. Highly biocompatible epoxy resin was reinforced by various weight fractions of seashell nanoparticles. The morphologies of the pristine bioepoxy, seashell-bioepoxy, and hydroxyapatite-bioepoxy composites were observed by scanning electron microscopy. Moreover, the mechanical properties were examined by the means of tension and Izod impact tests. Besides, the influence of seashell and hydroxyapatite nanoparticles on the bioepoxy chemical structure and thermal properties was also evaluated using Fourier transform infrared spectroscopy and differential scanning calorimetry technique, respectively. The tensile strength, modulus of elasticity, and impact strength of the seashell nanoparticle-reinforced bioepoxy were revealed to be higher than those of the unmodified bioepoxy and were significantly depended on the filler content. When the mass fraction of the reinforcement was 7 wt%, the improvement in the tensile strength, modulus of elasticity, and impact strength was around 46.7%, 37%, and 57%, respectively, compared to that of blank bioepoxy. In addition, these properties were higher for the composites loaded with seashell nanoparticles than those filled with commercially available hydroxyapatite nanoparticles. An enhancement in glass transition temperature for the bioepoxy after modification with both of these nanofillers was also achieved. All these features make these kinds of composites a promising option that could be used in the orthopaedic field. Furthermore, the use of seashell nanoparticles may reduce the cost of the resulted composite and alleviate the negative consequences of large quantity by-product waste seashells on the environment.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9156522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bone defects and disorders include trauma, osteonecrosis, osteoporosis, bone tumours, arthritis rheumatoid, osteosarcoma, and iatrogenic injury. Obtaining a composite material with characteristics that mimic what bones in the human body have is a vital target for the purpose of replacing or repairing damaged bones. The key objective of this study was to develop a composite having mechanical and biological properties that resemble to a large extent native bone features. Highly biocompatible epoxy resin was reinforced by various weight fractions of seashell nanoparticles. The morphologies of the pristine bioepoxy, seashell-bioepoxy, and hydroxyapatite-bioepoxy composites were observed by scanning electron microscopy. Moreover, the mechanical properties were examined by the means of tension and Izod impact tests. Besides, the influence of seashell and hydroxyapatite nanoparticles on the bioepoxy chemical structure and thermal properties was also evaluated using Fourier transform infrared spectroscopy and differential scanning calorimetry technique, respectively. The tensile strength, modulus of elasticity, and impact strength of the seashell nanoparticle-reinforced bioepoxy were revealed to be higher than those of the unmodified bioepoxy and were significantly depended on the filler content. When the mass fraction of the reinforcement was 7 wt%, the improvement in the tensile strength, modulus of elasticity, and impact strength was around 46.7%, 37%, and 57%, respectively, compared to that of blank bioepoxy. In addition, these properties were higher for the composites loaded with seashell nanoparticles than those filled with commercially available hydroxyapatite nanoparticles. An enhancement in glass transition temperature for the bioepoxy after modification with both of these nanofillers was also achieved. All these features make these kinds of composites a promising option that could be used in the orthopaedic field. Furthermore, the use of seashell nanoparticles may reduce the cost of the resulted composite and alleviate the negative consequences of large quantity by-product waste seashells on the environment.