{"title":"Vehicle identification number recognition based on neural network","authors":"Meng Fanjun, Yin Dong","doi":"10.12086/OEE.2021.200094","DOIUrl":null,"url":null,"abstract":"It is far essential to properly recognize the vehicle identification number (VIN) engraved on the car frame for vehicle surveillance and identification. In this paper, we propose an algorithm for recognizing rotational VIN im-ages based on neural network which incorporates two components: VIN detection and VIN recognition. Firstly, with lightweight neural network and text segmentation based on EAST, we attain efficient and excellent VIN detection performance. Secondly, the VIN recognition is regarded as a sequence classification problem. By means of connecting sequential classifiers, we predict VIN characters directly and precisely. For validating our algorithm, we collect a VIN dataset, which contains raw rotational VIN images and horizontal VIN images. Experimental results show that the algorithm we proposed achieves good performance on VIN detection and VIN recognition in real time.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":"5 1","pages":"200094"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
It is far essential to properly recognize the vehicle identification number (VIN) engraved on the car frame for vehicle surveillance and identification. In this paper, we propose an algorithm for recognizing rotational VIN im-ages based on neural network which incorporates two components: VIN detection and VIN recognition. Firstly, with lightweight neural network and text segmentation based on EAST, we attain efficient and excellent VIN detection performance. Secondly, the VIN recognition is regarded as a sequence classification problem. By means of connecting sequential classifiers, we predict VIN characters directly and precisely. For validating our algorithm, we collect a VIN dataset, which contains raw rotational VIN images and horizontal VIN images. Experimental results show that the algorithm we proposed achieves good performance on VIN detection and VIN recognition in real time.
光电工程Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
Founded in 1974, Opto-Electronic Engineering is an academic journal under the supervision of the Chinese Academy of Sciences and co-sponsored by the Institute of Optoelectronic Technology of the Chinese Academy of Sciences (IOTC) and the Optical Society of China (OSC). It is a core journal in Chinese and a core journal in Chinese science and technology, and it is included in domestic and international databases, such as Scopus, CA, CSCD, CNKI, and Wanfang.
Opto-Electronic Engineering is a peer-reviewed journal with subject areas including not only the basic disciplines of optics and electricity, but also engineering research and engineering applications. Optoelectronic Engineering mainly publishes scientific research progress, original results and reviews in the field of optoelectronics, and publishes related topics for hot issues and frontier subjects.
The main directions of the journal include:
- Optical design and optical engineering
- Photovoltaic technology and applications
- Lasers, optical fibres and communications
- Optical materials and photonic devices
- Optical Signal Processing