Symmetric Bloch oscillations of matter waves

Z. Pagel, Weicheng Zhong, Richard H. Parker, Christopher T. Olund, N. Yao, H. Mueller
{"title":"Symmetric Bloch oscillations of matter waves","authors":"Z. Pagel, Weicheng Zhong, Richard H. Parker, Christopher T. Olund, N. Yao, H. Mueller","doi":"10.1103/physreva.102.053312","DOIUrl":null,"url":null,"abstract":"Cold atoms in an optical lattice provide an ideal platform for studying Bloch oscillations. Here, we extend Bloch oscillations to two superposed optical lattices that are accelerated away from one another, and for the first time show that these symmetric Bloch oscillations can split, reflect and recombine matter waves coherently. Using the momentum parity-symmetry of the Hamiltonian, we map out the energy band structure of the process and show that superpositions of momentum states are created by adiabatically following the ground state of the Hamiltonian. The relative phase and velocity of the two lattices completely determines the trajectories of different branches of the matter wave. Experimentally, we demonstrate symmetric Bloch oscillations using cold Cesium atoms where we form interferometers with up to $240\\hbar k$ momentum splitting, one of the largest coherent momentum splittings achieved to date. This work has applications in macroscopic tests of quantum mechanics, measurements of fundamental constants, and searches for new physics.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.102.053312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Cold atoms in an optical lattice provide an ideal platform for studying Bloch oscillations. Here, we extend Bloch oscillations to two superposed optical lattices that are accelerated away from one another, and for the first time show that these symmetric Bloch oscillations can split, reflect and recombine matter waves coherently. Using the momentum parity-symmetry of the Hamiltonian, we map out the energy band structure of the process and show that superpositions of momentum states are created by adiabatically following the ground state of the Hamiltonian. The relative phase and velocity of the two lattices completely determines the trajectories of different branches of the matter wave. Experimentally, we demonstrate symmetric Bloch oscillations using cold Cesium atoms where we form interferometers with up to $240\hbar k$ momentum splitting, one of the largest coherent momentum splittings achieved to date. This work has applications in macroscopic tests of quantum mechanics, measurements of fundamental constants, and searches for new physics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物质波的对称布洛赫振荡
光学晶格中的冷原子为研究布洛赫振荡提供了理想的平台。在这里,我们将布洛赫振荡扩展到两个相互加速远离的叠加光学晶格,并首次表明这些对称的布洛赫振荡可以相干地分裂、反射和重组物质波。利用哈密顿量的动量奇偶对称性,我们绘制了这一过程的能带结构,并证明了动量态的叠加是由哈密顿量的基态绝热地产生的。两个晶格的相对相位和速度完全决定了物质波不同分支的运动轨迹。实验上,我们用冷铯原子证明了对称布洛赫振荡,在那里我们形成了具有高达240 hbar k$动量分裂的干涉仪,这是迄今为止实现的最大的相干动量分裂之一。这项工作在量子力学的宏观测试、基本常数的测量和寻找新物理学中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18 In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses Laser spectroscopy of the 2S1/2 - 2P1/2, 2P3/2 transitions in stored and cooled relativistic C3+ ions High-Resolution Imaging of Cold Atoms through a Multimode Fiber Bistable optical transmission through arrays of atoms in free space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1