Adsorption Characteristics of Zeolite A Synthesized from Wassa Kaolin for Thermal Energy Storage

L. K. Labik, B. Kwakye-Awuah, E. Abavare, B. Sefa-Ntiri, I. Nkrumah, Craig Williams
{"title":"Adsorption Characteristics of Zeolite A Synthesized from Wassa Kaolin for Thermal Energy Storage","authors":"L. K. Labik, B. Kwakye-Awuah, E. Abavare, B. Sefa-Ntiri, I. Nkrumah, Craig Williams","doi":"10.5539/JMSR.V9N3P21","DOIUrl":null,"url":null,"abstract":"Zeolites based on the numerous applications can be utilised in providing solutions to some challenges of our world. With the ability to store thermal energy as chemical potential, zeolites are able to store thermal energy for long periods. This can occur with very minimal loss of energy and indefinitely unless the zeolite comes into contact with an adsorbate. The use of zeolite - water as adsorbent - adsorbate pair in thermal energy storage (TES) applications have been studied and have shown good results. However, the cost of zeolites synthesized from reagents continue to hamper the effective use of this adsorbent. Zeolite A was synthesized from kaolin from Wassa in Ghana based on a modified synthesis route. The adsorption properties of the zeolite utilising a designed and fabricated TES system using amounts of 100g, 200g, 300g, 400g and 500g of zeolite with a 1:1.5 ratio to water. Adsorption isosteres were plotted with the temperature and pressure values recorded and results showed correlation to adsorption behaviour of zeolites. Langmuir adsorption isotherms with r-squared values greater than 90% confirmed the affinity of water for zeolites. isosteric heat of adsorption was calculated with the minimum being 5,655.84 J/g and the maximum being 8,113.44 J/g. This confirms that the Zeolite A synthesized from Was kaolin has the structural properties needed for TES applications.","PeriodicalId":16111,"journal":{"name":"Journal of Materials Science Research","volume":"63 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/JMSR.V9N3P21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Zeolites based on the numerous applications can be utilised in providing solutions to some challenges of our world. With the ability to store thermal energy as chemical potential, zeolites are able to store thermal energy for long periods. This can occur with very minimal loss of energy and indefinitely unless the zeolite comes into contact with an adsorbate. The use of zeolite - water as adsorbent - adsorbate pair in thermal energy storage (TES) applications have been studied and have shown good results. However, the cost of zeolites synthesized from reagents continue to hamper the effective use of this adsorbent. Zeolite A was synthesized from kaolin from Wassa in Ghana based on a modified synthesis route. The adsorption properties of the zeolite utilising a designed and fabricated TES system using amounts of 100g, 200g, 300g, 400g and 500g of zeolite with a 1:1.5 ratio to water. Adsorption isosteres were plotted with the temperature and pressure values recorded and results showed correlation to adsorption behaviour of zeolites. Langmuir adsorption isotherms with r-squared values greater than 90% confirmed the affinity of water for zeolites. isosteric heat of adsorption was calculated with the minimum being 5,655.84 J/g and the maximum being 8,113.44 J/g. This confirms that the Zeolite A synthesized from Was kaolin has the structural properties needed for TES applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瓦萨高岭土合成A型沸石的吸附特性研究
基于众多的应用,沸石可以用来为我们世界的一些挑战提供解决方案。沸石具有以化学势形式储存热能的能力,因此能够长时间储存热能。这可以发生在极小的能量损失和无限,除非沸石接触到吸附质。研究了沸石-水作为吸附剂-吸附物对在储热系统中的应用,并取得了良好的效果。然而,从试剂合成沸石的成本继续阻碍这种吸附剂的有效利用。以加纳Wassa地区的高岭土为原料,根据改进的合成路线合成了A型沸石。沸石的吸附性能采用设计和制造的TES系统,沸石用量为100g、200g、300g、400g和500g,沸石与水的比例为1:1.5。用记录的温度和压力值绘制了吸附等值线图,结果显示了沸石吸附行为的相关性。Langmuir吸附等温线的r平方值大于90%,证实了水对沸石的亲和力。计算出等容吸附热,最小值为5,655.84 J/g,最大值为8,113.44 J/g。这证实了由Was高岭土合成的A型沸石具有TES应用所需的结构特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural and Electronic Impact on Various Substrates of TiO2 Thin Film Using Sol-Gel Spin Coating Method On the Onset of Plasticity: Determination of Strength and Ductility Investigation to enhanced Physical and Mechanical Properties of Road Pavement in Asphalt Incorporating Low-Density Waste Plastic Bags Reviewer acknowledgements for Journal of Materials Science Research, Vol. 12, No. 2 Electron Theory of Metals - Answers to Unsolved Problems/Questions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1