Loss prevention in hydrocarbon facilities

N. Menon
{"title":"Loss prevention in hydrocarbon facilities","authors":"N. Menon","doi":"10.30881/JOGPS.00021","DOIUrl":null,"url":null,"abstract":"Loss Prevention techniques in hydrocarbon facilities are to prevent personal injury or loss of life, to protect the installation from fire, explosion, and operational safety hazards inherent to the facilities and Protection of the environment by early detection of hazardous conditions and the subsequent shutdown, vapor depressurizing, and ventilation of hydrocarbons. The loss prevention philosophy is normally formulated based on a maximum of one major incident occurring at any one time, and the premise that hazards can arise in any section of the facility, in varying degrees of magnitude, and from a variety of sources. On normally-manned[1] facilities, personnel are trained to manage operational activities with the highest regard for safe procedures and to react appropriately in the event of emergencies. The safety of the facility requires that the plant is inspected and maintained, safe procedures are used and improved based on experience, to minimize the probability of occurrence of hazardous conditions. On un-manned facilities[2], fire protection systems are provided based on a formal risk assessment which shows them to be necessary. This article focuses on the loss prevention philosophy implemented in a hydro carbon facility for safe operation of the facility either during manned operations or unmanned operations by focusing on parameters such as the design strategy adopted while designing the facility (such as facility layout, fire protection, flaring design, drains design), areas classifications inside the facility that is designed, escape and evacuation route, climate control etc.","PeriodicalId":93120,"journal":{"name":"Journal of oil, gas and petrochemical sciences","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oil, gas and petrochemical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30881/JOGPS.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Loss Prevention techniques in hydrocarbon facilities are to prevent personal injury or loss of life, to protect the installation from fire, explosion, and operational safety hazards inherent to the facilities and Protection of the environment by early detection of hazardous conditions and the subsequent shutdown, vapor depressurizing, and ventilation of hydrocarbons. The loss prevention philosophy is normally formulated based on a maximum of one major incident occurring at any one time, and the premise that hazards can arise in any section of the facility, in varying degrees of magnitude, and from a variety of sources. On normally-manned[1] facilities, personnel are trained to manage operational activities with the highest regard for safe procedures and to react appropriately in the event of emergencies. The safety of the facility requires that the plant is inspected and maintained, safe procedures are used and improved based on experience, to minimize the probability of occurrence of hazardous conditions. On un-manned facilities[2], fire protection systems are provided based on a formal risk assessment which shows them to be necessary. This article focuses on the loss prevention philosophy implemented in a hydro carbon facility for safe operation of the facility either during manned operations or unmanned operations by focusing on parameters such as the design strategy adopted while designing the facility (such as facility layout, fire protection, flaring design, drains design), areas classifications inside the facility that is designed, escape and evacuation route, climate control etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳氢化合物设施的损失预防
碳氢化合物设施的损失预防技术是为了防止人身伤害或生命损失,保护设施免受火灾、爆炸和设施固有的操作安全隐患的影响,并通过早期发现危险情况和随后的关闭、蒸汽减压和碳氢化合物通风来保护环境。预防损失的理念通常是基于在任何时候最多发生一次重大事故,并假设危险可能出现在设施的任何部分,其程度和来源各不相同。在正常配备人员[1]的设施中,人员接受培训,以最严格的安全程序管理业务活动,并在发生紧急情况时作出适当反应。设施的安全要求对工厂进行检查和维护,使用安全程序并根据经验进行改进,以尽量减少危险情况发生的可能性。在无人设施上[2],消防系统是根据正式的风险评估提供的,该评估表明消防系统是必要的。本文通过关注设施设计时采用的设计策略(如设施布局、消防、燃烧设计、排水设计)、设施内设计的区域分类、逃生和疏散路线、气候控制等参数,重点介绍了在有人操作或无人操作期间碳氢化合物设施安全运行的防损理念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Wellbore instability prediction and performance analysis using Poroelastic modeling" Comparison of Single, Binary and Temperature-Dependent Adsorption Models Based on Error Function Analysis Stochastic simulation of cavitation bubbles formation in the axial valve separator influenced by degree of opening Horizontal versus vertical wells interference in hydraulically fractured shale reservoirs Wellbore trajectory optimization for horizontal wells: the plan versus the reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1