A Speedy and Seamless Stationarity Analysis via causfinder Package in R

E. Cevher
{"title":"A Speedy and Seamless Stationarity Analysis via causfinder Package in R","authors":"E. Cevher","doi":"10.5281/ZENODO.35601","DOIUrl":null,"url":null,"abstract":"Stationarity analysis is a must for various studies in many fields that employ time series analysis. adfcs function in causfinder package in R performs Augmented Dickey-Fuller (ADF) test that takes into account the usage of same (i.e., common) sub-sample for all of the lag orders for the autoregressive process when stationarity is investigated. As is known, in all of the lag selection procedures in econometrics, same sub-sample must be used to determine the correct optimal minimum lag. We bouqoueted adfcs functions in adfcstable function whose functional value is a table that reveals all of the needed stationarity analysis of all the variables in a given system in a couple of seconds. In the returned ADF table, the results of all of the three standard cases (“both drift and time trend”, “drift without time trend” and “no drift, no time trend”) are presented for all of the variables in question. Whether the drift and time trend coefficients in the ADF regressions is significant is specified. adfcstable reveals the inconclusivities of ADF tests (the coefficient of the 1st lag of the dependent variable in the right of ADF regression is not “<0”; in the left, the dependent variable appear with the differenced form) whenever there appears such cases. It also presents optimal minimum lag order for the ADF regressions. We used three datasets from various fields: a dataset of functional integration of brain, a dataset for the determinants of foreign direct investment in Turkey, and a dataset for the determinants of current account deficit of Turkey.","PeriodicalId":7517,"journal":{"name":"American academic & scholarly research journal","volume":"22 1","pages":"97-113"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American academic & scholarly research journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.35601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stationarity analysis is a must for various studies in many fields that employ time series analysis. adfcs function in causfinder package in R performs Augmented Dickey-Fuller (ADF) test that takes into account the usage of same (i.e., common) sub-sample for all of the lag orders for the autoregressive process when stationarity is investigated. As is known, in all of the lag selection procedures in econometrics, same sub-sample must be used to determine the correct optimal minimum lag. We bouqoueted adfcs functions in adfcstable function whose functional value is a table that reveals all of the needed stationarity analysis of all the variables in a given system in a couple of seconds. In the returned ADF table, the results of all of the three standard cases (“both drift and time trend”, “drift without time trend” and “no drift, no time trend”) are presented for all of the variables in question. Whether the drift and time trend coefficients in the ADF regressions is significant is specified. adfcstable reveals the inconclusivities of ADF tests (the coefficient of the 1st lag of the dependent variable in the right of ADF regression is not “<0”; in the left, the dependent variable appear with the differenced form) whenever there appears such cases. It also presents optimal minimum lag order for the ADF regressions. We used three datasets from various fields: a dataset of functional integration of brain, a dataset for the determinants of foreign direct investment in Turkey, and a dataset for the determinants of current account deficit of Turkey.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于因果查找器的快速无缝平稳性分析
在许多使用时间序列分析的领域中,平稳性分析是各种研究的必要条件。R中的causfinder包中的adfcs函数执行增广的Dickey-Fuller (ADF)检验,该检验考虑到在调查平稳性时,自回归过程的所有滞后阶使用相同(即共同)子样本。众所周知,在计量经济学的所有滞后选择过程中,必须使用相同的子样本来确定正确的最优最小滞后。我们在adfcstable函数中对adfccs函数进行了bouqoued,该函数的函数值是一个表,该表显示了给定系统中所有变量在几秒钟内所需的所有平稳性分析。在返回的ADF表中,给出了所有相关变量的所有三种标准情况(“既有漂移和时间趋势”、“没有时间趋势的漂移”和“没有漂移,没有时间趋势”)的结果。对ADF回归中的漂移系数和时间趋势系数是否显著进行了说明。ADF检验的不确定性(ADF回归右侧因变量的第1滞后系数不<0);在左侧,每当出现这种情况时,因变量就会以不同的形式出现。给出了ADF回归的最优最小滞后阶数。我们使用了来自不同领域的三个数据集:一个是大脑功能整合数据集,一个是土耳其外国直接投资决定因素数据集,一个是土耳其经常账户赤字决定因素数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PUBLİC HEALTH WELLBEİNG SCALE: RELİABİLİTY AND VALİDİTY STUDY OF THE TURKİSH VERSİON urban Scalable Geospatial Proposal for Calculating a Social Capital Score for the Labor Market: İşgücü Piyasası İçin Bir Sosyal Sermaye Puanı Hesaplama Önerisi Analysis of the UK Tropical Freshwater Fish Market & Developments for Innovative Transportation Models A Speedy and Seamless Stationarity Analysis via causfinder Package in R The effects of thermal photons on Fisher information dynamics for a dispersive Jaynes-Cummings model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1