Effects of Presoaking Treatments on Emergence of Tea (Camellia sinensis) Seeds

Doobo Shim and Seung-Ho Jeon
{"title":"Effects of Presoaking Treatments on Emergence of Tea (Camellia sinensis) Seeds","authors":"Doobo Shim and Seung-Ho Jeon","doi":"10.7740/KJCS.2020.65.2.156","DOIUrl":null,"url":null,"abstract":"Emergence and early growth changes of stratification condition of tea (Camellia sinensis) seeds were investigated in 7 treatments (control, pH 4, pH 10, 70% ethanol (EtOH), 10 mM H2O2, 100 mM H2O2, and physical shock (5.9 J)). Ethanol treatment was toxic and did not induce emergence. The emergence rate was 36.7% in the control, 26.7% under pH 10, 46.7% under pH 4, 48.3% under physical shock, 51.7% under 10 mM H2O2, and 65.0% under 100 mM H2O2 treatments. It was higher by approximately 178% in the H2O2 treatment as compared to the control. Plant height was 6.5 cm in the control, 6.6 cm under pH 10, 7.6 cm under pH 4, 7.8 cm under physical shock, 8.3 cm under 10 mM H2O2, and 9.1 cm under 100 mM H2O2 treatments. Leaf length and leaf width were also higher under the H2O2 treatment. Therefore, hydrogen peroxide treatment induced emergence and increased the uniformity of early growth.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"1 1","pages":"156-160"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Korean Journal of Crop Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7740/KJCS.2020.65.2.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emergence and early growth changes of stratification condition of tea (Camellia sinensis) seeds were investigated in 7 treatments (control, pH 4, pH 10, 70% ethanol (EtOH), 10 mM H2O2, 100 mM H2O2, and physical shock (5.9 J)). Ethanol treatment was toxic and did not induce emergence. The emergence rate was 36.7% in the control, 26.7% under pH 10, 46.7% under pH 4, 48.3% under physical shock, 51.7% under 10 mM H2O2, and 65.0% under 100 mM H2O2 treatments. It was higher by approximately 178% in the H2O2 treatment as compared to the control. Plant height was 6.5 cm in the control, 6.6 cm under pH 10, 7.6 cm under pH 4, 7.8 cm under physical shock, 8.3 cm under 10 mM H2O2, and 9.1 cm under 100 mM H2O2 treatments. Leaf length and leaf width were also higher under the H2O2 treatment. Therefore, hydrogen peroxide treatment induced emergence and increased the uniformity of early growth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预浸处理对茶树种子出苗的影响
研究了对照、pH 4、pH 10、70%乙醇(EtOH)、10 mM H2O2、100 mM H2O2和5.9 J物理冲击7种处理对茶树种子出苗和生长早期分层条件的影响。乙醇处理是有毒性的,并且不会引起羽化。出苗率分别为:对照36.7%、pH 10处理26.7%、pH 4处理46.7%、物理冲击处理48.3%、10 mM H2O2处理51.7%、100 mM H2O2处理65.0%。在H2O2处理下,与对照组相比,它提高了约178%。对照的株高为6.5 cm, pH 10处理为6.6 cm, pH 4处理为7.6 cm,物理冲击处理为7.8 cm, 10 mM H2O2处理为8.3 cm, 100 mM H2O2处理为9.1 cm。H2O2处理的叶片长度和叶片宽度也较高。因此,双氧水处理可以诱导出芽,增加早期生长的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Transcriptome Analysis of the Response of Two Lines of Rapeseed (Brassica napus L.) to Cold Stress Evaluation on the Effects of Deicing Salts on Crop using Seedling Emergence Assay of Oilseed Rape (Brassica napus) Review on Adaptability of Rice Varieties and Cultivation Technology According to Climate Change in Korea Investigation of Changes in Grain Quality and Physicochemical Properties of Rice According to the Temperature during the Ripening Stage and Preharvest Sprouting Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1