Pub Date : 2021-03-01DOI: 10.7740/KJCS.2021.66.1.037
J. Lee, Kwang-Soo Kim, Young-Lok Cha, Dahee An, Jongwon Byun, Yong-Ku Kang
Rapeseed is a typical winter crop, and its freezing stress tolerance is a major feature for winter survival. Therefore, it is important to comprehend clearly the physical and molecular mechanisms of rapeseed under freezing stress conditions. This study investigates the physical and transcriptome changes of two rapeseed lines, ‘J8634-B-30’ and ‘EMS26’, under cold acclimation and freezing temperature treatments. The proline content of ‘J8634-B-30’ at 5 °C increased 8.7-fold compared to that before treatment, and there was no significant change in that of ‘EMS26’ RNA-sequencing analysis revealed 5,083 differentially expressed genes (DEGs) of ‘J8634-B-30’ under cold acclimation condition. Among the genes, 2,784 (54.8%) were up-regulated and 2,299 (45.2%) were down-regulated. The DEGs of ‘EMS26’ under cold acclimation condition were 5,831 genes, and contained 2,199 up-regulated genes (37.7%) and 3,632 down-regulated genes (62.3%). Among them, only DEGs annotated in the cold response-related signaling pathways were selected, and their expression in the two rapeseed lines was compared. Comparative DEGs analysis indicated that cold response related signaling pathways are proline metabolism and ABA (Abscisic acid) signaling. And ICE (Inducer of CBF expression) CBF (C-repeat-binding factor) COR (Cold-regulated) signaling were the significantly differentially expressed transcripts in the two rapeseed lines. The major induced transcripts of ‘J8634-B-30’ induced P5CS (Δ‘-pyrroline-5-carboxylate synthetase), which is related to proline biosynthesis, PYL (pyrabactin resistance-like protein, ABA receptor) and COR413 (cold-regulated 413 plasma membrane 1). In conclusion, these result provide a foundation for understanding the mechanisms of freezing stress tolerance in rapeseeds. Further functional studies should be performed on the freezing stress-related genes identified in this study, which can contribute to the transgenic and molecular breeding for freezing stress tolerance in rapeseed.
{"title":"Comparative Transcriptome Analysis of the Response of Two Lines of Rapeseed (Brassica napus L.) to Cold Stress","authors":"J. Lee, Kwang-Soo Kim, Young-Lok Cha, Dahee An, Jongwon Byun, Yong-Ku Kang","doi":"10.7740/KJCS.2021.66.1.037","DOIUrl":"https://doi.org/10.7740/KJCS.2021.66.1.037","url":null,"abstract":"Rapeseed is a typical winter crop, and its freezing stress tolerance is a major feature for winter survival. Therefore, it is important to comprehend clearly the physical and molecular mechanisms of rapeseed under freezing stress conditions. This study investigates the physical and transcriptome changes of two rapeseed lines, ‘J8634-B-30’ and ‘EMS26’, under cold acclimation and freezing temperature treatments. The proline content of ‘J8634-B-30’ at 5 °C increased 8.7-fold compared to that before treatment, and there was no significant change in that of ‘EMS26’ RNA-sequencing analysis revealed 5,083 differentially expressed genes (DEGs) of ‘J8634-B-30’ under cold acclimation condition. Among the genes, 2,784 (54.8%) were up-regulated and 2,299 (45.2%) were down-regulated. The DEGs of ‘EMS26’ under cold acclimation condition were 5,831 genes, and contained 2,199 up-regulated genes (37.7%) and 3,632 down-regulated genes (62.3%). Among them, only DEGs annotated in the cold response-related signaling pathways were selected, and their expression in the two rapeseed lines was compared. Comparative DEGs analysis indicated that cold response related signaling pathways are proline metabolism and ABA (Abscisic acid) signaling. And ICE (Inducer of CBF expression) CBF (C-repeat-binding factor) COR (Cold-regulated) signaling were the significantly differentially expressed transcripts in the two rapeseed lines. The major induced transcripts of ‘J8634-B-30’ induced P5CS (Δ‘-pyrroline-5-carboxylate synthetase), which is related to proline biosynthesis, PYL (pyrabactin resistance-like protein, ABA receptor) and COR413 (cold-regulated 413 plasma membrane 1). In conclusion, these result provide a foundation for understanding the mechanisms of freezing stress tolerance in rapeseeds. Further functional studies should be performed on the freezing stress-related genes identified in this study, which can contribute to the transgenic and molecular breeding for freezing stress tolerance in rapeseed.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"12 1","pages":"37-71"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84855959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing use of deicing salts has caused various environmental problems, including crop damage along the motorway where deicing salts are sprayed during winter. Deicing salts used on roads have been reported to negatively affect crops, but little information is known about their impact on crops. A seedling emergence assay was conducted to evaluate the effects of deicing salts on crops using oilseed rape (Brassica napus) as a model plant. We tested five chloride deicing salts consisting of NaCl, CaCl2, or MgCl2 and 1 non-chloride deicing salt (SM-3) at a range of concentrations (25, 50, 100, 200, and 400 mM), and untreated control. Regardless of deicing salts, they significantly delayed and reduced seedling emergence of oilseed rape with increasing salt concentration. Non-linear regression analysis of seedling emergence with a range of salt concentrations by fitting to the log-logistic model revealed that the chloride deicing salts reduced seedling emergence more than the non-chloride deicing salt SM-3. The GR50 value, the concentration causing 50% seedling emergence, of SM-3 was 47.1 mM, while those of the chloride deicing salts ranged from 30.7 mM (PC-10) to 37.5 mM (ES-1), showing approximately 10 mM difference between non-chloride and chloride deicing salts. Our findings suggest that seedling emergence assay is a useful tool to estimate the potential damage caused by deicing salts on crops.
除冰盐的使用越来越多,造成了各种环境问题,包括在冬季喷洒除冰盐的高速公路沿线的作物受损。据报道,道路上使用的除冰盐会对作物产生负面影响,但对它们对作物的影响知之甚少。以油菜(Brassica napus)为模式植物,研究了除冰盐对作物出苗的影响。我们测试了由NaCl、CaCl2或MgCl2组成的五种氯化物除冰盐和一种非氯化物除冰盐(SM-3),浓度范围为25、50、100、200和400 mM,并进行了未经处理的对照。无论除冰盐浓度如何,随着盐浓度的增加,油菜的出苗期明显延迟和减少。通过拟合logistic模型对不同盐浓度下幼苗出苗率进行非线性回归分析,发现氯盐除冰盐比非氯盐除冰盐SM-3更能降低幼苗出苗率。SM-3的出苗浓度GR50值为47.1 mM,氯化物除冰盐的GR50值为30.7 mM (PC-10) ~ 37.5 mM (ES-1),非氯化物除冰盐与氯化物除冰盐的GR50值相差约10 mM。我们的研究结果表明,幼苗出苗试验是评估除冰盐对作物潜在危害的有效工具。
{"title":"Evaluation on the Effects of Deicing Salts on Crop using Seedling Emergence Assay of Oilseed Rape (Brassica napus)","authors":"Soo-Hyun Lim, Hye‐Jin Yu, Chan-Young Lee, Yunguo Gong, Byung-duk Lee, Do-Soon Kim","doi":"10.7740/KJCS.2021.66.1.072","DOIUrl":"https://doi.org/10.7740/KJCS.2021.66.1.072","url":null,"abstract":"The increasing use of deicing salts has caused various environmental problems, including crop damage along the motorway where deicing salts are sprayed during winter. Deicing salts used on roads have been reported to negatively affect crops, but little information is known about their impact on crops. A seedling emergence assay was conducted to evaluate the effects of deicing salts on crops using oilseed rape (Brassica napus) as a model plant. We tested five chloride deicing salts consisting of NaCl, CaCl2, or MgCl2 and 1 non-chloride deicing salt (SM-3) at a range of concentrations (25, 50, 100, 200, and 400 mM), and untreated control. Regardless of deicing salts, they significantly delayed and reduced seedling emergence of oilseed rape with increasing salt concentration. Non-linear regression analysis of seedling emergence with a range of salt concentrations by fitting to the log-logistic model revealed that the chloride deicing salts reduced seedling emergence more than the non-chloride deicing salt SM-3. The GR50 value, the concentration causing 50% seedling emergence, of SM-3 was 47.1 mM, while those of the chloride deicing salts ranged from 30.7 mM (PC-10) to 37.5 mM (ES-1), showing approximately 10 mM difference between non-chloride and chloride deicing salts. Our findings suggest that seedling emergence assay is a useful tool to estimate the potential damage caused by deicing salts on crops.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"74 1","pages":"72-79"},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86160712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Changes in Grain Quality and Physicochemical Properties of Rice According to the Temperature during the Ripening Stage and Preharvest Sprouting","authors":"H. Lee, Yun-Ho Lee, Woon-Ha Hwang, Jae-Hyeok Jeong, Seo-Yeong Yang, ChungGen Lee, MyoungGoo Choi","doi":"10.7740/KJCS.2020.65.4.294","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.294","url":null,"abstract":"","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"8 1","pages":"294-302"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73836626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.353
Inhye Lee, Min-Jung Seo, M. Park, Namgeol Kim, G. Yi, Yu-Young Lee, Mi-Hyang Kim, B. Lee, H. Yun
Recently in Korea, soybean harvesting has been delayed due to rainfall during the harvesting season, resulting in a reduction in yield and seed quality. This study was conducted to analyze the changes in yield and seed quality during delayed harvest with rainfall treatment using different harvesting methods, including field harvesting and polyethylene film covering after cutting fully-matured soybean plants (PE covering after cutting), with two major Korean soybean cultivars (Glycine max L), Pungsannamulkong and Daewonkong. The shattering rate of Pungsannamulkong, which is higher than that of Daewonkong, increased up to 41.8% when the harvest was delayed for 40 days without rainfall treatment by harvesting with PE covering after cutting. The weight of 100 seeds tended to decrease slightly as harvesting was delayed. When Daewonkong was harvested using the PE covering after cutting method with rainfall treatment, the yield decreased to the lowest level with a 0.8 kg ha-1 daily reduction rate. Pungsannamulkong showed the lowest yield when harvested using PE covering after cutting without rainfall treatment with a 3.4 kg ha daily reduction rate. The infected seed rate increased according to the harvest delay in both cultivars, and significant differences were observed according to rainfall treatment and harvesting method. The germination rate was maintained above 95% even after 40 days of delayed harvest if there was no rainfall treatment. However, with rainfall treatment, the germination rate was significantly lowered as harvesting time was delayed. In the field harvesting with rainfall treatment, the germination rate decreased to 77.2% for Daewonkong and 76.5% for Pungsannamulkong after 40 days of harvest delay. For the 100-seed weight, effects of individual treatments and interactions between treatments were not observed. In contrast, the effect of interactions between treatments on the shattering rate was significant in both cultivars, indicating that the shattering rate had the greatest impact on the yield changes during delayed harvest.
最近在韩国,由于收获季节的降雨,大豆的收获被推迟,导致产量和种子质量下降。本研究以韩国2个主要大豆品种(Glycine max L)丰山南木空(punsannamulkong)和大原空(Daewonkong)为研究对象,采用田间收获和刈割后聚乙烯覆膜(PE覆膜)两种不同的收获方式,分析了降雨处理对延迟收获期大豆产量和种子品质的影响。丰山绿木空的破碎率比大源空高,在刈割后再进行PE覆盖采收,不进行降雨处理,延迟40天采收,破碎率提高了41.8%。100粒种子的重量随着收获时间的推迟有轻微下降的趋势。大元空采用刈割后覆膜加雨水处理时,产量下降至最低水平,日降幅为0.8 kg hm -1。丰山木空刈割后不作降雨处理,PE覆盖收获时产量最低,日减少率为3.4 kg ha。两个品种的侵染率随收获时间的延迟而增加,且因降雨处理和收获方式的不同而有显著差异。在没有降雨处理的情况下,即使延迟收获40 d,发芽率仍保持在95%以上。但在降雨处理下,随着采收时间的推迟,发芽率显著降低。在雨水处理的田间收获中,延迟收获40 d后,大原空和丰山那木空的发芽率分别降至77.2%和76.5%。对于百粒重,未观察到个别处理的影响和处理间的相互作用。处理间互作对两个品种落粒率的影响均显著,说明落粒率对延迟收获期产量变化的影响最大。
{"title":"Yield and Seed Quality Changes According to Delayed Harvest with Rainfall Treatment in Soybean (Glycine max L.)","authors":"Inhye Lee, Min-Jung Seo, M. Park, Namgeol Kim, G. Yi, Yu-Young Lee, Mi-Hyang Kim, B. Lee, H. Yun","doi":"10.7740/KJCS.2020.65.4.353","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.353","url":null,"abstract":"Recently in Korea, soybean harvesting has been delayed due to rainfall during the harvesting season, resulting in a reduction in yield and seed quality. This study was conducted to analyze the changes in yield and seed quality during delayed harvest with rainfall treatment using different harvesting methods, including field harvesting and polyethylene film covering after cutting fully-matured soybean plants (PE covering after cutting), with two major Korean soybean cultivars (Glycine max L), Pungsannamulkong and Daewonkong. The shattering rate of Pungsannamulkong, which is higher than that of Daewonkong, increased up to 41.8% when the harvest was delayed for 40 days without rainfall treatment by harvesting with PE covering after cutting. The weight of 100 seeds tended to decrease slightly as harvesting was delayed. When Daewonkong was harvested using the PE covering after cutting method with rainfall treatment, the yield decreased to the lowest level with a 0.8 kg ha-1 daily reduction rate. Pungsannamulkong showed the lowest yield when harvested using PE covering after cutting without rainfall treatment with a 3.4 kg ha daily reduction rate. The infected seed rate increased according to the harvest delay in both cultivars, and significant differences were observed according to rainfall treatment and harvesting method. The germination rate was maintained above 95% even after 40 days of delayed harvest if there was no rainfall treatment. However, with rainfall treatment, the germination rate was significantly lowered as harvesting time was delayed. In the field harvesting with rainfall treatment, the germination rate decreased to 77.2% for Daewonkong and 76.5% for Pungsannamulkong after 40 days of harvest delay. For the 100-seed weight, effects of individual treatments and interactions between treatments were not observed. In contrast, the effect of interactions between treatments on the shattering rate was significant in both cultivars, indicating that the shattering rate had the greatest impact on the yield changes during delayed harvest.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"31 1","pages":"353-364"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81565168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.457
A. Ju, Mi-jung Kim, Sang‐Ik Han, Hee-Youn Chi, Chang Kwon, Soyeon Kim, Yang Jin, Yun-Ju Kim, Heesung Moon, Seung-Hyun Kim, I. Chung
Legumes are one of the largest families of crop plants and are widely consumed and produced for their nutritional and commercial benefits. Mung bean (Vigna radiata L.) is a legume crop that contains various functional compounds ; moreover, it has strong antioxidant properties and is becoming an increasingly important food crop. However, most previous studies on mung beans have focused on their primary metabolites. In this study, we investigated the composition and contents of phenolic compounds, fatty acids, soyasapogenol and tocopherol in mung beans cultivated in different regions and cultivated at different seeding dates. Material analysis was conducted using the following methods: LC-MS/MS, GC-FID and HPLC-ELSD. In total, 57 different samples were analyzed. Thirteen phenolic compounds were detected in mung beans. Of these, vitexin and isovitexin were the most abundant compounds, accounting for approximately 99% of phenolic compounds. The difference in phenol compounds according to the seeding dates of mung bean was not statistically significant. The total fatty acid content in beans was the highest in Pyeongchang. Significant differences in total fatty acid content were found according to the cultivation regions. Crops grown in Sohyeon and Dahyeon showed the highest soyasapogenol B content in the Suwon region, and these were the lowest in Jeonju. The total tocopherol content of beans cultivated in Dahyeon and Sohyeon was the lowest and highest in Pyeongchang. Soyasapogenol B and total tocopherol content were not significantly different according to seeding dates. This study was conducted to obtain basic data for the cultivation of mung beans with a high content of various functional materials in terms of regional specialization and optimal seeding time.
{"title":"Comparison of Chemical Constituents in Mung bean (Vigna radiata L.) Flour between Cultivation Regions and Seeding Dates","authors":"A. Ju, Mi-jung Kim, Sang‐Ik Han, Hee-Youn Chi, Chang Kwon, Soyeon Kim, Yang Jin, Yun-Ju Kim, Heesung Moon, Seung-Hyun Kim, I. Chung","doi":"10.7740/KJCS.2020.65.4.457","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.457","url":null,"abstract":"Legumes are one of the largest families of crop plants and are widely consumed and produced for their nutritional and commercial benefits. Mung bean (Vigna radiata L.) is a legume crop that contains various functional compounds ; moreover, it has strong antioxidant properties and is becoming an increasingly important food crop. However, most previous studies on mung beans have focused on their primary metabolites. In this study, we investigated the composition and contents of phenolic compounds, fatty acids, soyasapogenol and tocopherol in mung beans cultivated in different regions and cultivated at different seeding dates. Material analysis was conducted using the following methods: LC-MS/MS, GC-FID and HPLC-ELSD. In total, 57 different samples were analyzed. Thirteen phenolic compounds were detected in mung beans. Of these, vitexin and isovitexin were the most abundant compounds, accounting for approximately 99% of phenolic compounds. The difference in phenol compounds according to the seeding dates of mung bean was not statistically significant. The total fatty acid content in beans was the highest in Pyeongchang. Significant differences in total fatty acid content were found according to the cultivation regions. Crops grown in Sohyeon and Dahyeon showed the highest soyasapogenol B content in the Suwon region, and these were the lowest in Jeonju. The total tocopherol content of beans cultivated in Dahyeon and Sohyeon was the lowest and highest in Pyeongchang. Soyasapogenol B and total tocopherol content were not significantly different according to seeding dates. This study was conducted to obtain basic data for the cultivation of mung beans with a high content of various functional materials in terms of regional specialization and optimal seeding time.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"16 1","pages":"457-467"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85993399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.339
Jae-kyeong Baek, W. Sang, Junhwan Kim, Pyong Shin, Jung-Il Cho, M. Seo
Recently, abnormal weather conditions, such as extreme high temperatures and droughts, have increased in frequency due to climate change, there has accordingly been growing concern regarding the detrimental effects on field crop, including soybean. Therefore, this study was conducted to examine the effects of increased temperatures on soybean growth and yield using a temperature gradient chamber (TGC). Two major types of soybean cultivar, a mediumseed cultivar such as Daepung-2 and a large-seed cultivar such as Daechan, were used and four temperature treatments, aT+1°C (ambient temperature+ 1°C), aT+2°C (ambient temperature+2°C), aT+3°C (ambient temperature+3°C) and aT+4°C (ambient temperature+4°C) were established to examine the growth response and seed yield of each cultivar. Seed yield showed a higher correlation with seed weight (r=0.713***) and an increase in temperature affected seed yield by reducing the single seed weight. In particular, the seed growth rate of the large-seed cultivar (Daechan) increased at high temperature, resulting in a reduction in the number of days for full maturity. Our results accordingly indicate that large-seed cultivar, such as Daechan, is potentially vulnerable to high temperature stress. The results of this study can be used as basic data in the development of cultivation technology to reduce the damage caused by elevated temperatures. Also, further research is required to evaluate the response of each process contributing to seed yield production under high temperatures.
{"title":"Yield Response of Soybean [Glycine max (L.) Merrill] to High Temperature Condition in a Temperature Gradient Chamber","authors":"Jae-kyeong Baek, W. Sang, Junhwan Kim, Pyong Shin, Jung-Il Cho, M. Seo","doi":"10.7740/KJCS.2020.65.4.339","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.339","url":null,"abstract":"Recently, abnormal weather conditions, such as extreme high temperatures and droughts, have increased in frequency due to climate change, there has accordingly been growing concern regarding the detrimental effects on field crop, including soybean. Therefore, this study was conducted to examine the effects of increased temperatures on soybean growth and yield using a temperature gradient chamber (TGC). Two major types of soybean cultivar, a mediumseed cultivar such as Daepung-2 and a large-seed cultivar such as Daechan, were used and four temperature treatments, aT+1°C (ambient temperature+ 1°C), aT+2°C (ambient temperature+2°C), aT+3°C (ambient temperature+3°C) and aT+4°C (ambient temperature+4°C) were established to examine the growth response and seed yield of each cultivar. Seed yield showed a higher correlation with seed weight (r=0.713***) and an increase in temperature affected seed yield by reducing the single seed weight. In particular, the seed growth rate of the large-seed cultivar (Daechan) increased at high temperature, resulting in a reduction in the number of days for full maturity. Our results accordingly indicate that large-seed cultivar, such as Daechan, is potentially vulnerable to high temperature stress. The results of this study can be used as basic data in the development of cultivation technology to reduce the damage caused by elevated temperatures. Also, further research is required to evaluate the response of each process contributing to seed yield production under high temperatures.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"15 1","pages":"339-345"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86568146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.406
Chuloh Cho, Kyung Hwa Kim, Mi-Suk Seo, M. Choi, Jae-Buhm Chun, M. Jin, Dool-Yi Kim
Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.
{"title":"Development and Characterization of EMS-induced Mutants with Enhanced Salt Tolerance in Silage Maize","authors":"Chuloh Cho, Kyung Hwa Kim, Mi-Suk Seo, M. Choi, Jae-Buhm Chun, M. Jin, Dool-Yi Kim","doi":"10.7740/KJCS.2020.65.4.406","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.406","url":null,"abstract":"Maize (Zea mays L.) is one of the most valuable agricultural crops and is grown under a wide spectrum of environmental conditions. However, maize is moderately sensitive to salt stress, and soil salinity is a serious threat to its production worldwide. In this study, we used ethyl methane sulfonate (EMS) to generate salt-tolerant silage maize mutants. We screened salt-tolerant lines from 203 M3 mutant populations by evaluating the morphological phenotype after salt stress treatment and selected the 140ES91 line. The 140ES91 mutant showed improved plant growth as well as higher proline content and leaf photosynthetic capacity compared with those of wild-type plants under salt stress conditions. Using whole-genome re-sequencing analysis, 1,103 single nucleotide polymorphisms and 71 insertions or deletions were identified as common variants between KS140 and 140ES91 in comparison with the reference genome B73. Furthermore, the expression patterns of three genes, which are involved in salt stress responses, were increased in the 140ES91 mutant under salt stress. Taken together, the mutant line identified in our study could be used as an improved breeding material for transferring salt tolerance traits in maize varieties.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"26 1","pages":"406-415"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87345426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.314
Woo-Jae Kim, Man-Kee Baek, Hyeong-Su Park, Geon-Mi Lee, Chang-Min Lee, Seok-Man Kim, Young-chan Cho, Jeonghwan Seo, O. Jeong
This study was carried out to develop a resistant variety against the K3a race of bacterial blight, Xanthomonas oryzae pv. oryzae, through expansion and pyramiding of resistance genes. To develop an elite bacterial blight-resistant cultivar, the breeding process and bacterial blight resistance reactions in advanced backcross lines (ABLs) were analyzed. ABLs21 which contain Xa3 and Xa21, were developed by double backcrossing japonica cultivar Hwanggeumnuri, which has bacterial blight resistant Xa3 gene, and indica variety IRBB21, which havs Xa21 gene, followed by disease resistance bioassay and marker-assisted selection. The resistance genes of ABLs21 were amplified by PCR with the molecular markers 9643.T4 (Xa3) and U1/I1 (Xa21). Hwanggeumnuri and IRBB3 showed resistance reactions against K1, K2, and K3 races, and a susceptible reaction against K3a, K4, and K5 races. IRBB21 showed resistance reactions against K2, K3, K3a, K4 and K5 races, and a susceptible reaction against K1 race. Hwanggeumnuri showed susceptible reactions at the seedling, tillering and adult stages (all stages), whereas ABL21-1 showed moderate resistance at the tillering stage. ABL21-1 showed stable resistance against 18 isolates of K3a race, and the lesion length was shorter than that of the donor parents. In cluster analysis, the HB4032 isolate showed the highest pathogenicity among the 18 isolates. The molecular marker polymorphisms and average substituted chromosome segment lengths of ABLs21 were 63.2 % and 86.1 cM, respectively. Insertion of the donor chromosomal segments occurred in the predicted region of the Xa21 gene of ABLs21.
{"title":"Development of Disease-resistant Japonica Rice Varieties and Effects of Pyramiding Resistance Genes","authors":"Woo-Jae Kim, Man-Kee Baek, Hyeong-Su Park, Geon-Mi Lee, Chang-Min Lee, Seok-Man Kim, Young-chan Cho, Jeonghwan Seo, O. Jeong","doi":"10.7740/KJCS.2020.65.4.314","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.314","url":null,"abstract":"This study was carried out to develop a resistant variety against the K3a race of bacterial blight, Xanthomonas oryzae pv. oryzae, through expansion and pyramiding of resistance genes. To develop an elite bacterial blight-resistant cultivar, the breeding process and bacterial blight resistance reactions in advanced backcross lines (ABLs) were analyzed. ABLs21 which contain Xa3 and Xa21, were developed by double backcrossing japonica cultivar Hwanggeumnuri, which has bacterial blight resistant Xa3 gene, and indica variety IRBB21, which havs Xa21 gene, followed by disease resistance bioassay and marker-assisted selection. The resistance genes of ABLs21 were amplified by PCR with the molecular markers 9643.T4 (Xa3) and U1/I1 (Xa21). Hwanggeumnuri and IRBB3 showed resistance reactions against K1, K2, and K3 races, and a susceptible reaction against K3a, K4, and K5 races. IRBB21 showed resistance reactions against K2, K3, K3a, K4 and K5 races, and a susceptible reaction against K1 race. Hwanggeumnuri showed susceptible reactions at the seedling, tillering and adult stages (all stages), whereas ABL21-1 showed moderate resistance at the tillering stage. ABL21-1 showed stable resistance against 18 isolates of K3a race, and the lesion length was shorter than that of the donor parents. In cluster analysis, the HB4032 isolate showed the highest pathogenicity among the 18 isolates. The molecular marker polymorphisms and average substituted chromosome segment lengths of ABLs21 were 63.2 % and 86.1 cM, respectively. Insertion of the donor chromosomal segments occurred in the predicted region of the Xa21 gene of ABLs21.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"16 1","pages":"314-326"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91088302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.447
Kunyan Zou, Ki-Seung Kim, Daewoong Lee, T. Jun
Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.
{"title":"Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins","authors":"Kunyan Zou, Ki-Seung Kim, Daewoong Lee, T. Jun","doi":"10.7740/KJCS.2020.65.4.447","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.447","url":null,"abstract":"Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"1 1","pages":"447-456"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74876237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-01DOI: 10.7740/KJCS.2020.65.4.284
C. Lee, Y. Choi, H. Lee, Taek-Gu Jeong, Ik-Jei Kim, Chung-Kon Kim, S. Woo
Rice consumption in Korea has been decreasing as the eating habits of the Korean people have diversified with rapid economic growth. Recently, floury endosperm rice cultivars were developed to boost rice consumption and replace wheat flour consumption with rice flour, which is vulnerable to viviparity under wet weather during the grain-filling stage because of its loosely packed starch granule structures. To overcome this limitation, it is necessary to find a suitable rice transplanting date to produce high-quality rice flour by altering the heading ecology type and changing the cultivation time by region. We examined four floury endosperm rice cultivars (FERC) in the Cheongju (central plain area) and Boeun (mid-mountainous area) regions of Korea from 2017 to 2019. Of the FERCs, the mid-late maturing types (MMT) Seolgaeng (SG), Hangaru (HGR), and Shingil (SGL) exhibited high yield and yield components after transplanting May 30 in both regions; the early maturing type (EMT) Garumi 2 (GRM2) also exhibited high yield after transplanting June 20 in Cheongju. In addition, MMTs showed the same tendency as the characteristics shown in Cheongju when grown in the Boeun region, and EMT displayed high yield and yield components after transplanting June 10. The FERCs could easily present pre-harvest sprouting in the rainy season during the grain-filling stage after 20 days post-heading because the mean temperature and frequency of more three-day rainfalls have increased over the last 5 years from the previous annual averages. Viviparity of HGR and GRM2 decreased as the transplanting date was delayed, with decreases of 2.3%–4.6% in HGR and 11.9%–23.1% in GRM2 according to the region. SGL was generally resistant to viviparity because of the Tongil type. To minimize pre-harvest sprouting and produce high yield of rice flour in the Chungbuk province, the most suitable transplanting time was the end of May in MMT and the middle and end of June in EMT.
{"title":"Effect of Transplanting Date on the Growth, Yield, and Occurrence of Viviparity in Floury Endosperm Rice Cultivars in the Chungbuk Province","authors":"C. Lee, Y. Choi, H. Lee, Taek-Gu Jeong, Ik-Jei Kim, Chung-Kon Kim, S. Woo","doi":"10.7740/KJCS.2020.65.4.284","DOIUrl":"https://doi.org/10.7740/KJCS.2020.65.4.284","url":null,"abstract":"Rice consumption in Korea has been decreasing as the eating habits of the Korean people have diversified with rapid economic growth. Recently, floury endosperm rice cultivars were developed to boost rice consumption and replace wheat flour consumption with rice flour, which is vulnerable to viviparity under wet weather during the grain-filling stage because of its loosely packed starch granule structures. To overcome this limitation, it is necessary to find a suitable rice transplanting date to produce high-quality rice flour by altering the heading ecology type and changing the cultivation time by region. We examined four floury endosperm rice cultivars (FERC) in the Cheongju (central plain area) and Boeun (mid-mountainous area) regions of Korea from 2017 to 2019. Of the FERCs, the mid-late maturing types (MMT) Seolgaeng (SG), Hangaru (HGR), and Shingil (SGL) exhibited high yield and yield components after transplanting May 30 in both regions; the early maturing type (EMT) Garumi 2 (GRM2) also exhibited high yield after transplanting June 20 in Cheongju. In addition, MMTs showed the same tendency as the characteristics shown in Cheongju when grown in the Boeun region, and EMT displayed high yield and yield components after transplanting June 10. The FERCs could easily present pre-harvest sprouting in the rainy season during the grain-filling stage after 20 days post-heading because the mean temperature and frequency of more three-day rainfalls have increased over the last 5 years from the previous annual averages. Viviparity of HGR and GRM2 decreased as the transplanting date was delayed, with decreases of 2.3%–4.6% in HGR and 11.9%–23.1% in GRM2 according to the region. SGL was generally resistant to viviparity because of the Tongil type. To minimize pre-harvest sprouting and produce high yield of rice flour in the Chungbuk province, the most suitable transplanting time was the end of May in MMT and the middle and end of June in EMT.","PeriodicalId":22717,"journal":{"name":"The Korean Journal of Crop Science","volume":"120 1","pages":"284-293"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83227279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}