Co-SRL: A Convex Optimization Algorithm for Anchor Localization in Wireless Sensor Networks

Wu Liu , Donghong Sun , Ping Ren , Yihui Zhang
{"title":"Co-SRL: A Convex Optimization Algorithm for Anchor Localization in Wireless Sensor Networks","authors":"Wu Liu ,&nbsp;Donghong Sun ,&nbsp;Ping Ren ,&nbsp;Yihui Zhang","doi":"10.1016/j.aasri.2013.10.059","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposed a Convex Optimization method which is called Co-SRL and is used to localize sensor location in Wireless Sensor Networks.Co-SRL can be used to help the node to localize a friendnode or mobile node using anchors. In Co-SRL, convex optimization algorithm is used forthe estimationof malicious nodeposition.Simulation result shows that Co-SRL is both secure and robust, in an environment without colluding, Co-SRLcan identify more than half of the malicious nodes; and in an environment with colluding, no more than 15% of malicious nodescan escape from the identification of our methods.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"5 ","pages":"Pages 62-66"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2013.10.059","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671613000607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposed a Convex Optimization method which is called Co-SRL and is used to localize sensor location in Wireless Sensor Networks.Co-SRL can be used to help the node to localize a friendnode or mobile node using anchors. In Co-SRL, convex optimization algorithm is used forthe estimationof malicious nodeposition.Simulation result shows that Co-SRL is both secure and robust, in an environment without colluding, Co-SRLcan identify more than half of the malicious nodes; and in an environment with colluding, no more than 15% of malicious nodescan escape from the identification of our methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线传感器网络中锚点定位的凸优化算法
本文提出了一种称为Co-SRL的凸优化方法,用于无线传感器网络中传感器的位置定位。Co-SRL可用于帮助节点使用锚定位好友节点或移动节点。在Co-SRL中,采用凸优化算法对恶意沉积进行估计。仿真结果表明,Co-SRL具有安全性和鲁棒性,在无串通的环境下,Co-SRL可以识别出一半以上的恶意节点;在串通的环境下,不超过15%的恶意节点能够逃脱我们方法的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1