Research on I-PageRank algorithm model of Process knowledge graph based on K-Shell decomposition algorithm

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00082
Yanwei Huo, Hongyu Cheng
{"title":"Research on I-PageRank algorithm model of Process knowledge graph based on K-Shell decomposition algorithm","authors":"Yanwei Huo, Hongyu Cheng","doi":"10.1109/ICNLP58431.2023.00082","DOIUrl":null,"url":null,"abstract":"PageRank algorithm in the calculation of nodes is equally distributed to the node chain of all nodes, but in the actual production of manufacturing enterprises, the importance of process knowledge in process documents is different, if according to the PageRank algorithm PR value equal transfer to calculate the importance of the artifact, efficiency and accuracy is generally low, so the importance of PR value transfer difference should be considered. Therefore, this paper introduces K-Shell decomposition algorithm in PageRank algorithm, constructs a new I-PageRank algorithm model, adding the importance of each node in the linked network to the PageRank algorithm, which improves the efficiency and accuracy of PageRank algorithm in identifying key nodes.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"35 1","pages":"419-424"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

PageRank algorithm in the calculation of nodes is equally distributed to the node chain of all nodes, but in the actual production of manufacturing enterprises, the importance of process knowledge in process documents is different, if according to the PageRank algorithm PR value equal transfer to calculate the importance of the artifact, efficiency and accuracy is generally low, so the importance of PR value transfer difference should be considered. Therefore, this paper introduces K-Shell decomposition algorithm in PageRank algorithm, constructs a new I-PageRank algorithm model, adding the importance of each node in the linked network to the PageRank algorithm, which improves the efficiency and accuracy of PageRank algorithm in identifying key nodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于K-Shell分解算法的过程知识图谱I-PageRank算法模型研究
PageRank算法在计算节点时是均匀分布到节点链的所有节点上,但在实际生产制造企业中,工艺知识在工艺文档中的重要性是不同的,如果按照PageRank算法的PR值相等转移来计算工件的重要性,效率和准确性一般较低,因此应考虑PR值转移的重要性差异。因此,本文在PageRank算法中引入K-Shell分解算法,构建新的I-PageRank算法模型,将链接网络中每个节点的重要性加入到PageRank算法中,提高了PageRank算法识别关键节点的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1