Characterization of Methyl Ester Sulfonate (MES) from Mahagony (Swietenia macrophylla King) with Variations in H2SO4 Concentration and Sulfonation Duration

L. Nurliana, L. Kadidae, S. Sunarti, R. Musta
{"title":"Characterization of Methyl Ester Sulfonate (MES) from Mahagony (Swietenia macrophylla King) with Variations in H2SO4 Concentration and Sulfonation Duration","authors":"L. Nurliana, L. Kadidae, S. Sunarti, R. Musta","doi":"10.20961/alchemy.17.2.51613.192-201","DOIUrl":null,"url":null,"abstract":"Methyl ester sulfonate derived from mahogany (Swietenia macrophylla K.) oil has been characterized. The research began by synthesizing mahogany methyl ester (ME) in 4 stages: pressing, degumming, esterification, and transesterification. The next process was synthesizing methyl ester sulfonate (MES) also in four stages: sulfonation, bleaching, neutralization, and drying. The reactant for MES synthesis in this study was H2SO4 with a mole ratio of 1:6 and variations in the concentration of H2SO4 (70%, 75%, 80%, 85%, and 90%) as well as variations in the duration of sulfonation (45, 60, 75, 70, and 105 minutes) to determine the characteristics of the synthesized MES including density, acid number, and emulsion stability. The effect of the combination of treatment variations was analyzed using the two-way ANOVA test and the least significant difference (LSD) test. This research showed that MES from mahogany seed oil from a combination of variations in treatment has a density ranging from 0.91 to 0.97 g/mL where the LSD test at α = 0.05 produces three different MES density groups due to variations in the concentration of H2SO4 namely A (70 % and 75%), B (80% and 85%), and C (90%). The resulting MES acid numbers ranged from 4.69 ‒ 17.74 mgKOH/g sample with three different groups of MES acid numbers due to variations in the concentration of H2SO4, namely A (85 and 90%), B (75% and 80%), and C (70%). The stability of mahogany oil-based MES emulsion ranged from 0.000 ‒ 0.975 and two different MES emulsion stability groups were obtained due to variations in the concentration of H2SO4, namely A (80% and 85%) and B (70%, 75%, and 90%). FTIR spectrophotometer showed the presence of S=O groups at wavenumber 1172 cm-1 and S‒O groups at wavenumbers 972.12 cm-1 and 879.54 cm-1 proved that MES was successfully synthesized.","PeriodicalId":7926,"journal":{"name":"Alchemy: Jurnal Penelitian Kimia","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alchemy: Jurnal Penelitian Kimia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/alchemy.17.2.51613.192-201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methyl ester sulfonate derived from mahogany (Swietenia macrophylla K.) oil has been characterized. The research began by synthesizing mahogany methyl ester (ME) in 4 stages: pressing, degumming, esterification, and transesterification. The next process was synthesizing methyl ester sulfonate (MES) also in four stages: sulfonation, bleaching, neutralization, and drying. The reactant for MES synthesis in this study was H2SO4 with a mole ratio of 1:6 and variations in the concentration of H2SO4 (70%, 75%, 80%, 85%, and 90%) as well as variations in the duration of sulfonation (45, 60, 75, 70, and 105 minutes) to determine the characteristics of the synthesized MES including density, acid number, and emulsion stability. The effect of the combination of treatment variations was analyzed using the two-way ANOVA test and the least significant difference (LSD) test. This research showed that MES from mahogany seed oil from a combination of variations in treatment has a density ranging from 0.91 to 0.97 g/mL where the LSD test at α = 0.05 produces three different MES density groups due to variations in the concentration of H2SO4 namely A (70 % and 75%), B (80% and 85%), and C (90%). The resulting MES acid numbers ranged from 4.69 ‒ 17.74 mgKOH/g sample with three different groups of MES acid numbers due to variations in the concentration of H2SO4, namely A (85 and 90%), B (75% and 80%), and C (70%). The stability of mahogany oil-based MES emulsion ranged from 0.000 ‒ 0.975 and two different MES emulsion stability groups were obtained due to variations in the concentration of H2SO4, namely A (80% and 85%) and B (70%, 75%, and 90%). FTIR spectrophotometer showed the presence of S=O groups at wavenumber 1172 cm-1 and S‒O groups at wavenumbers 972.12 cm-1 and 879.54 cm-1 proved that MES was successfully synthesized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫酸浓度和磺化时间变化对Mahagony (swetenia macrophylla King)甲酯磺酸盐(MES)的影响
从红木油中提取的甲酯磺酸盐进行了表征。本研究首先通过压制、脱胶、酯化和酯交换4个阶段合成红木甲酯。下一步是合成甲酯磺酸盐(MES),也分为四个阶段:磺化、漂白、中和和干燥。本研究中合成MES的反应物为H2SO4,摩尔比为1:6,通过H2SO4浓度(70%、75%、80%、85%和90%)和磺化时间(45、60、75、70和105分钟)的变化来确定合成MES的密度、酸数和乳液稳定性等特性。采用双因素方差分析和最小显著性差异(LSD)检验分析组合治疗变化的影响。本研究表明,不同处理组合的红木籽油的MES密度范围为0.91至0.97 g/mL,其中α = 0.05的LSD测试由于H2SO4浓度的变化产生了三个不同的MES密度组,即a(70%和75%),B(80%和85%)和C(90%)。由于H2SO4浓度的变化,MES酸数在4.69 ~ 17.74 mgKOH/g样品之间,分别为A(85和90%)、B(75%和80%)和C(70%)三组不同的MES酸数。红木油基MES乳液的稳定性范围为0.000 ~ 0.975,并根据H2SO4浓度的变化得到了A(80%和85%)和B(70%、75%和90%)两个不同的MES乳液稳定性组。FTIR分光光度计测得波数1172 cm-1处存在S=O基团,波数972.12 cm-1和879.54 cm-1处存在S - O基团,证明MES合成成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fermentation Effect of Cacao Beans Originate from Jember on Polyphenol-Flavonoid Content and Radical Scavenging Activity Identifikasi Komponen Aktif Jahe Merah (Zingiber officinale Roscoe var. Rubrum) sebagai Sumber Antioksidan dengan Pendekatan Metabolomik Berbasis HPLC Modifikasi Membran Kitosan Tertaut Silang Tripolifosfat Untuk Deteksi Ion Cu(II) GC-MS Analysis and Antibacterial Activity of Essential Oils of Five Syzygium Species Leaves Sintesis Carbon Nanofoam dan Karakteristiknya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1