Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst

Yuri Yuliani
{"title":"Algoritma Random Forest Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Seleksi Fitur Bestfirst","authors":"Yuri Yuliani","doi":"10.29408/jit.v5i2.5896","DOIUrl":null,"url":null,"abstract":"Heart failure is a global health problem that not only causes physical problems, other impacts such as psychological, social, and economic, as well as depression, which affects treatment, worsens functional status, and increases hospitalization rates to death. According to the World Health Organization (WHO), nearly 17.5 million people die from cardiovascular disease, which represents 31% of deaths in the world. Using machine learning to predict the survival of patients with heart failure so that they can take precautions from the start. The stages of the research carried out include the business understanding stage, the data understanding stage, the data preparation stage, the modeling stage, and the evaluation stage. In this study, using feature selection using best-first resulted in 4 very influential features, namely age, injection_fraction, serum_creatinene and time, and handling imbalance class using the class balancer model. Random forest algorithm with 80% percentage split method which produces 91.45% accuracy, mean absolute error 0.1874, incorrectly classified instances 8.55%, precision 0.915, recall 0.914, AUC 0.953.","PeriodicalId":13567,"journal":{"name":"Infotek : Jurnal Informatika dan Teknologi","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotek : Jurnal Informatika dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/jit.v5i2.5896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Heart failure is a global health problem that not only causes physical problems, other impacts such as psychological, social, and economic, as well as depression, which affects treatment, worsens functional status, and increases hospitalization rates to death. According to the World Health Organization (WHO), nearly 17.5 million people die from cardiovascular disease, which represents 31% of deaths in the world. Using machine learning to predict the survival of patients with heart failure so that they can take precautions from the start. The stages of the research carried out include the business understanding stage, the data understanding stage, the data preparation stage, the modeling stage, and the evaluation stage. In this study, using feature selection using best-first resulted in 4 very influential features, namely age, injection_fraction, serum_creatinene and time, and handling imbalance class using the class balancer model. Random forest algorithm with 80% percentage split method which produces 91.45% accuracy, mean absolute error 0.1874, incorrectly classified instances 8.55%, precision 0.915, recall 0.914, AUC 0.953.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林算法使用Bestfirst功能选择来预测心脏衰竭患者的生存
心力衰竭是一个全球性的健康问题,不仅会引起身体问题,还会造成心理、社会和经济以及抑郁症等其他影响,影响治疗,恶化功能状态,并增加住院率至死亡率。根据世界卫生组织(WHO)的数据,近1750万人死于心血管疾病,占世界死亡人数的31%。使用机器学习来预测心力衰竭患者的存活率,这样他们就可以从一开始就采取预防措施。所进行的研究阶段包括业务理解阶段、数据理解阶段、数据准备阶段、建模阶段和评估阶段。在本研究中,使用best-first进行特征选择,得到了年龄、注射分数、血清肌酐和时间这4个非常有影响的特征,并使用类平衡器模型处理不平衡类。随机森林算法采用80%百分比分割法,准确率91.45%,平均绝对误差0.1874,错误分类实例8.55%,精度0.915,召回率0.914,AUC 0.953。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Sistem Informasi Geografis Dalam Pemetaan Toko Oleh - Oleh Khas Lombok Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke Penerapan Metode Waterfall dalam Pengembangan Aplikasi Schedule Maintenance Alat Produksi Perancangan Sistem Informasi Absensi Menggunakan Metode QR Code Berbasis Android Aplikasi IT Support Work Orders Berbasis Web Dalam Rangka Menuju Sidoarjo Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1