Madeleine Fosslie, Adeel Manaf, Mads Lerdrup, K. Hansen, G. Gilfillan, J. Dahl
{"title":"Going low to reach high: Small‐scale ChIP‐seq maps new terrain","authors":"Madeleine Fosslie, Adeel Manaf, Mads Lerdrup, K. Hansen, G. Gilfillan, J. Dahl","doi":"10.1002/wsbm.1465","DOIUrl":null,"url":null,"abstract":"Chromatin immunoprecipitation (ChIP) enables mapping of specific histone modifications or chromatin‐associated factors in the genome and represents a powerful tool in the study of chromatin and genome regulation. Importantly, recent technological advances that couple ChIP with whole‐genome high‐throughput sequencing (ChIP‐seq) now allow the mapping of chromatin factors throughout the genome. However, the requirement for large amounts of ChIP‐seq input material has long made it challenging to assess chromatin profiles of cell types only available in limited numbers. For many cell types, it is not feasible to reach high numbers when collecting them as homogeneous cell populations in vivo. Nonetheless, it is an advantage to work with pure cell populations to reach robust biological conclusions. Here, we review (a) how ChIP protocols have been scaled down for use with as little as a few hundred cells; (b) which considerations to be aware of when preparing small‐scale ChIP‐seq and analyzing data; and (c) the potential of small‐scale ChIP‐seq datasets for elucidating chromatin dynamics in various biological systems, including some examples such as oocyte maturation and preimplantation embryo development.","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6
Abstract
Chromatin immunoprecipitation (ChIP) enables mapping of specific histone modifications or chromatin‐associated factors in the genome and represents a powerful tool in the study of chromatin and genome regulation. Importantly, recent technological advances that couple ChIP with whole‐genome high‐throughput sequencing (ChIP‐seq) now allow the mapping of chromatin factors throughout the genome. However, the requirement for large amounts of ChIP‐seq input material has long made it challenging to assess chromatin profiles of cell types only available in limited numbers. For many cell types, it is not feasible to reach high numbers when collecting them as homogeneous cell populations in vivo. Nonetheless, it is an advantage to work with pure cell populations to reach robust biological conclusions. Here, we review (a) how ChIP protocols have been scaled down for use with as little as a few hundred cells; (b) which considerations to be aware of when preparing small‐scale ChIP‐seq and analyzing data; and (c) the potential of small‐scale ChIP‐seq datasets for elucidating chromatin dynamics in various biological systems, including some examples such as oocyte maturation and preimplantation embryo development.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine