{"title":"Performance and accuracy predictions of approximation methods for shortest-path algorithms on GPUs","authors":"Busenur Aktılav, Işıl Öz","doi":"10.1016/j.parco.2022.102942","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Approximate computing techniques, where less-than-perfect solutions are acceptable, present performance-accuracy trade-offs by performing inexact computations. Moreover, </span>heterogeneous architectures<span><span>, a combination of miscellaneous compute units, offer high performance as well as energy efficiency. Graph algorithms utilize the parallel computation units of heterogeneous </span>GPU architectures as well as performance improvements offered by </span></span>approximation<span> methods. Since different approximations yield different speedup and accuracy loss for the target execution, it becomes impractical to test all methods with various parameters. In this work, we perform approximate computations for the three shortest-path graph algorithms and propose a machine learning framework to predict the impact of the approximations on program performance and output accuracy. We evaluate random predictions for both synthetic and real road-network graphs, and predictions of the large graph cases from small graph instances. We achieve less than 5% prediction error rates for speedup and inaccuracy values.</span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"112 ","pages":"Article 102942"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000400","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Approximate computing techniques, where less-than-perfect solutions are acceptable, present performance-accuracy trade-offs by performing inexact computations. Moreover, heterogeneous architectures, a combination of miscellaneous compute units, offer high performance as well as energy efficiency. Graph algorithms utilize the parallel computation units of heterogeneous GPU architectures as well as performance improvements offered by approximation methods. Since different approximations yield different speedup and accuracy loss for the target execution, it becomes impractical to test all methods with various parameters. In this work, we perform approximate computations for the three shortest-path graph algorithms and propose a machine learning framework to predict the impact of the approximations on program performance and output accuracy. We evaluate random predictions for both synthetic and real road-network graphs, and predictions of the large graph cases from small graph instances. We achieve less than 5% prediction error rates for speedup and inaccuracy values.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications