Farhan M. A. Nashwan, Khaled A. M. Al Soufy, N. Al-Ashwal, Majed A. Al-Badany
{"title":"Design of Automatic Number Plate Recognition System for Yemeni Vehicles with Support Vector Machine","authors":"Farhan M. A. Nashwan, Khaled A. M. Al Soufy, N. Al-Ashwal, Majed A. Al-Badany","doi":"10.5815/ijisa.2023.04.04","DOIUrl":null,"url":null,"abstract":"Automatic Number Plate Recognition (ANPR) is an important tool in the Intelligent Transport System (ITS). Plate features can be used to provide the identification of any vehicle as they help ensure effective law enforcement and security. However, this is a challenging problem, because of the diversity of plate formats, different scales, rotations and non-uniform illumination and other conditions during image acquisition. This work aims to design and implement an ANPR system specified for Yemeni vehicle plates. The proposed system involves several steps to detect, segment, and recognize Yemeni vehicle plate numbers. First, a dataset of images is manually collected. Then, the collected images undergo preprocessing, followed by plate extraction, digit segmentation, and feature extraction. Finally, the plate numbers are identified using Support Vector Machine (SVM). When designing the proposed system, all possible conditions that could affect the efficiency of the system were considered. The experimental results showed that the proposed system achieved 96.98% and 99.19% of the training and testing success rates respectively.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"19 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2023.04.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic Number Plate Recognition (ANPR) is an important tool in the Intelligent Transport System (ITS). Plate features can be used to provide the identification of any vehicle as they help ensure effective law enforcement and security. However, this is a challenging problem, because of the diversity of plate formats, different scales, rotations and non-uniform illumination and other conditions during image acquisition. This work aims to design and implement an ANPR system specified for Yemeni vehicle plates. The proposed system involves several steps to detect, segment, and recognize Yemeni vehicle plate numbers. First, a dataset of images is manually collected. Then, the collected images undergo preprocessing, followed by plate extraction, digit segmentation, and feature extraction. Finally, the plate numbers are identified using Support Vector Machine (SVM). When designing the proposed system, all possible conditions that could affect the efficiency of the system were considered. The experimental results showed that the proposed system achieved 96.98% and 99.19% of the training and testing success rates respectively.