Sentiment Analysis of Cryptocurrency Exchange Application on Twitter Using Naïve Bayes Classifier Method

Andhika Octa Indarso, H. N. Irmanda, Ria Astriatma
{"title":"Sentiment Analysis of Cryptocurrency Exchange Application on Twitter Using Naïve Bayes Classifier Method","authors":"Andhika Octa Indarso, H. N. Irmanda, Ria Astriatma","doi":"10.31315/telematika.v20i1.9044","DOIUrl":null,"url":null,"abstract":"Purpose: The growth and development of the digital currency industry also presents a variety of applications for conducting transactions using these currencies, including utilizing cryptocurrency exchanges to make investments. InI ndonesia, there are two applications that fall into the category of the largest cryptocurrency exchange and are recognized by Bappebti (Commodity Futures Trading Regulatory Agency), namely TokoCrypto and Indodax. Both applications are analyzed based on the sentiments of their users on Twitter.Design/methodology/approach: In this study the data collected is data originating from social media Twitter and has the keywords \"indodax\" or \"#indodax\" and \"tokocrypto\" or \"#tokocrypto\". The data used is between January 2021 – January 2022. The data collected from Twitter is processed using the Naïve Bayes Classifier algorithm.Findings/result: From the results of the analysis, it was found that the Indodax application has a higher positive sentiment percentage value of 9% compared to TokoCrypto.Originality/value/state of the art: The use of the Naïve Bayes algorithm in this study supports sentiment analysis of cryptocurrency exchange application users to consider which application has better positive sentiment for investing in digital currency or cryptocurrency.","PeriodicalId":31716,"journal":{"name":"Telematika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/telematika.v20i1.9044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The growth and development of the digital currency industry also presents a variety of applications for conducting transactions using these currencies, including utilizing cryptocurrency exchanges to make investments. InI ndonesia, there are two applications that fall into the category of the largest cryptocurrency exchange and are recognized by Bappebti (Commodity Futures Trading Regulatory Agency), namely TokoCrypto and Indodax. Both applications are analyzed based on the sentiments of their users on Twitter.Design/methodology/approach: In this study the data collected is data originating from social media Twitter and has the keywords "indodax" or "#indodax" and "tokocrypto" or "#tokocrypto". The data used is between January 2021 – January 2022. The data collected from Twitter is processed using the Naïve Bayes Classifier algorithm.Findings/result: From the results of the analysis, it was found that the Indodax application has a higher positive sentiment percentage value of 9% compared to TokoCrypto.Originality/value/state of the art: The use of the Naïve Bayes algorithm in this study supports sentiment analysis of cryptocurrency exchange application users to consider which application has better positive sentiment for investing in digital currency or cryptocurrency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Naïve贝叶斯分类器的Twitter加密货币交易应用情感分析
目的:数字货币行业的增长和发展也提出了使用这些货币进行交易的各种应用,包括利用加密货币交易所进行投资。在印度尼西亚,有两个应用程序属于最大的加密货币交易所,并得到了Bappebti(商品期货交易监管机构)的认可,即tokcrypto和Indodax。这两个应用程序都是根据Twitter上用户的情绪进行分析的。设计/方法/方法:在本研究中收集的数据来自社交媒体Twitter,并具有关键词“indodax”或“#indodax”和“tokcrypto”或“# tokcrypto”。所用数据为2021年1月至2022年1月。从Twitter收集的数据使用Naïve贝叶斯分类器算法进行处理。发现/结果:从分析结果来看,与tokcrypto相比,Indodax应用程序的积极情绪百分比值更高,为9%。原创性/价值/技术水平:本研究中使用Naïve贝叶斯算法支持加密货币交换应用程序用户的情绪分析,以考虑哪个应用程序对投资数字货币或加密货币具有更好的积极情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
24 weeks
期刊最新文献
Identification of Social Media Posts Containing Self-reported COVID-19 Symptoms using Triple Word Embeddings and Long Short-Term Memory Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification Comparative Analysis of Classification Methods in Sentiment Analysis: The Impact of Feature Selection and Ensemble Techniques Optimization Optimizing Clustering of Indonesian Text Data Using Particle Swarm Optimization Algorithm: A Case Study of the Quran Translation Monitoring Development Board based on InfluxDB and Grafana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1