{"title":"Mechanism of pore formation in solid","authors":"P. Wei, S. Hsiao","doi":"10.1109/IMPACT.2009.5382272","DOIUrl":null,"url":null,"abstract":"The shapes of a growing or decaying bubble entrapped by a solidification front are predicted in this work. The bubble results from supersaturation of a dissolved gas in the liquid ahead of the solidification front. Pore formation and its shape in solid are one of the most serious issues affecting properties, microstructure, and stresses in materials. In this study, the bubble and pore shapes entrapped in solid are realistically predicted by utilizing perturbation solutions of Young-Laplace equation governing the tiny bubble shape in the literature. The growth and entrapment of a microbubble in solid can be predicted and found to agree with experimental data.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"69 1","pages":"660-661"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The shapes of a growing or decaying bubble entrapped by a solidification front are predicted in this work. The bubble results from supersaturation of a dissolved gas in the liquid ahead of the solidification front. Pore formation and its shape in solid are one of the most serious issues affecting properties, microstructure, and stresses in materials. In this study, the bubble and pore shapes entrapped in solid are realistically predicted by utilizing perturbation solutions of Young-Laplace equation governing the tiny bubble shape in the literature. The growth and entrapment of a microbubble in solid can be predicted and found to agree with experimental data.