Fang Gao, Zhangqin Huang, Shulong Wang, Xinrong Ji
{"title":"A Manycore Processor Based Multilayer Perceptron Feedforward Acceleration Framework for Embedded System","authors":"Fang Gao, Zhangqin Huang, Shulong Wang, Xinrong Ji","doi":"10.1109/ICISCE.2016.21","DOIUrl":null,"url":null,"abstract":"Because of the complex architecture and multiple iterations algorithm, neural network is sometimes hard for traditional embedded devices to meet the needs of real-time processing speed in large scale data applications. Manycore processors are directly applicable for parallel implementation of the neural network. In this paper we present a multilayer perception feed forward acceleration framework based on power efficiency manycore processor, including network mapping strategy, data structure design and inter-core communication method. The framework is implemented on a Zynq and Epiphany combined hardware platform with OpenCL. The experimental results show that in a concrete example of character recognition, the framework with Epiphany achieves about four times feed forward acceleration than the dual-core ARM in Zynq with same prediction accuracy level.","PeriodicalId":6882,"journal":{"name":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","volume":"7 1","pages":"49-53"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Information Science and Control Engineering (ICISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Because of the complex architecture and multiple iterations algorithm, neural network is sometimes hard for traditional embedded devices to meet the needs of real-time processing speed in large scale data applications. Manycore processors are directly applicable for parallel implementation of the neural network. In this paper we present a multilayer perception feed forward acceleration framework based on power efficiency manycore processor, including network mapping strategy, data structure design and inter-core communication method. The framework is implemented on a Zynq and Epiphany combined hardware platform with OpenCL. The experimental results show that in a concrete example of character recognition, the framework with Epiphany achieves about four times feed forward acceleration than the dual-core ARM in Zynq with same prediction accuracy level.