{"title":"Design of a remote plasma-enhanced chemical vapor deposition system for growth of tin containing group-IV alloys","authors":"G. Grzybowski, M. Ware, A. Kiefer, B. Claflin","doi":"10.1116/6.0000406","DOIUrl":null,"url":null,"abstract":"Group-IV alloys of Ge and/or Si with Sn are challenging to prepare due to the low solubility of Sn in both of these elements. Herein, we describe a remote plasma-enhanced chemical vapor deposition (RPECVD) system designed to synthesize such group-IV alloys. Thin films of Ge, Ge1−ySiy, Ge1−xSnx, and Ge1−x−ySiySnx were deposited in the range of 280−410 °C on Si (001) substrates utilizing a remote He plasma with downstream injected mixtures of SnCl4, SiH4, and/or GeH4 precursors. The composition and structural properties of these RPECVD films were characterized with x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. They were found to be crystalline, oriented with the substrate, and nearly relaxed due to the formation of an ∼5 nm thick interface layer with a high density of edge dislocations and stacking faults.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"29 1","pages":"062209"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Group-IV alloys of Ge and/or Si with Sn are challenging to prepare due to the low solubility of Sn in both of these elements. Herein, we describe a remote plasma-enhanced chemical vapor deposition (RPECVD) system designed to synthesize such group-IV alloys. Thin films of Ge, Ge1−ySiy, Ge1−xSnx, and Ge1−x−ySiySnx were deposited in the range of 280−410 °C on Si (001) substrates utilizing a remote He plasma with downstream injected mixtures of SnCl4, SiH4, and/or GeH4 precursors. The composition and structural properties of these RPECVD films were characterized with x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. They were found to be crystalline, oriented with the substrate, and nearly relaxed due to the formation of an ∼5 nm thick interface layer with a high density of edge dislocations and stacking faults.