Michael Wiechecki, I. Thusyanthan, P. Nowak, J. Sandberg
{"title":"Soil-structure interaction behind integral bridge abutments","authors":"Michael Wiechecki, I. Thusyanthan, P. Nowak, J. Sandberg","doi":"10.1680/jgeen.22.00115","DOIUrl":null,"url":null,"abstract":"Integral bridges are preferred on infrastructure schemes as they have lower maintenance costs than a conventional jointed bridge. A key aspect of integral bridge design is the assessment of long-term passive resistance that develops in the abutment backfill due to seasonal movements of the superstructure. This resistance is currently defined by an intermediate earth pressure coefficient termed K*, and is typically evaluated using the Limit Equilibrium (LE) approach prescribed in BSI PD-6694-1:2011+A1:2020. This paper adopts the alternate numerical design approach and investigates the development of K* behind full height abutments using Soil-Structure Interaction (SSI) modelling in PLAXIS-2D. The study demonstrates that mobilised passive resistance is primarily a function of backfill and structural stiffnesses, and that the current LE approach does not capture the backfill resistance profile correctly. The effectiveness of the SSI method was verified by comparison to the LE method. The current study provides a SSI methodology that is an efficient design approach, and which is suitable for a wide variety of integral bridge arrangements beyond the current LE method applicability.","PeriodicalId":54572,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Geotechnical Engineering","volume":"57 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Geotechnical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.22.00115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integral bridges are preferred on infrastructure schemes as they have lower maintenance costs than a conventional jointed bridge. A key aspect of integral bridge design is the assessment of long-term passive resistance that develops in the abutment backfill due to seasonal movements of the superstructure. This resistance is currently defined by an intermediate earth pressure coefficient termed K*, and is typically evaluated using the Limit Equilibrium (LE) approach prescribed in BSI PD-6694-1:2011+A1:2020. This paper adopts the alternate numerical design approach and investigates the development of K* behind full height abutments using Soil-Structure Interaction (SSI) modelling in PLAXIS-2D. The study demonstrates that mobilised passive resistance is primarily a function of backfill and structural stiffnesses, and that the current LE approach does not capture the backfill resistance profile correctly. The effectiveness of the SSI method was verified by comparison to the LE method. The current study provides a SSI methodology that is an efficient design approach, and which is suitable for a wide variety of integral bridge arrangements beyond the current LE method applicability.
期刊介绍:
Geotechnical Engineering provides a forum for the publication of high quality, topical and relevant technical papers covering all aspects of geotechnical research, design, construction and performance. The journal aims to be of interest to those civil, structural or geotechnical engineering practitioners wishing to develop a greater understanding of the influence of geotechnics on the built environment.