Photodetachment spectroscopy of quasibound states of the negative ion of lanthanum

C. Walter, N. D. Gibson, N. Lyman, J. Wang
{"title":"Photodetachment spectroscopy of quasibound states of the negative ion of lanthanum","authors":"C. Walter, N. D. Gibson, N. Lyman, J. Wang","doi":"10.1103/PhysRevA.102.042812","DOIUrl":null,"url":null,"abstract":"The negative ion of lanthanum, La$^-$, has one of the richest bound state spectra observed for an atomic negative ion and has been proposed as a promising candidate for laser-cooling applications. In the present experiments, La$^-$ was investigated using tunable infrared photodetachment spectroscopy. The relative signal for neutral atom production was measured with a crossed ion-beam--laser-beam apparatus over the photon energy range 590 - 920 meV (2100 - 1350 nm) to probe the continuum region above the La neutral atom ground state. Eleven prominent peaks were observed in the La$^-$ photodetachment cross section due to resonant excitation of quasibound transient negative ion states in the continuum which subsequently autodetach. In addition, thresholds were observed for photodetachment from several bound states of La$^-$ to both ground and excited states of La. The present results provide information on the excited state structure and dynamics of La$^-$ that depend crucially on multielectron correlation effects.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.102.042812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The negative ion of lanthanum, La$^-$, has one of the richest bound state spectra observed for an atomic negative ion and has been proposed as a promising candidate for laser-cooling applications. In the present experiments, La$^-$ was investigated using tunable infrared photodetachment spectroscopy. The relative signal for neutral atom production was measured with a crossed ion-beam--laser-beam apparatus over the photon energy range 590 - 920 meV (2100 - 1350 nm) to probe the continuum region above the La neutral atom ground state. Eleven prominent peaks were observed in the La$^-$ photodetachment cross section due to resonant excitation of quasibound transient negative ion states in the continuum which subsequently autodetach. In addition, thresholds were observed for photodetachment from several bound states of La$^-$ to both ground and excited states of La. The present results provide information on the excited state structure and dynamics of La$^-$ that depend crucially on multielectron correlation effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镧负离子准束缚态的光脱离光谱
镧的负离子La$^-$是原子负离子中束缚态光谱最丰富的离子之一,已被认为是激光冷却应用的有前途的候选离子。在本实验中,用可调谐红外光分离光谱研究了La$^-$。在光子能量590 - 920 meV (2100 - 1350 nm)范围内,用交叉离子束-激光束装置测量了中性原子产生的相对信号,探测了La中性原子基态以上的连续区。在La$^-$光剥离截面上观察到11个明显的峰,这是由于连续介质中准束缚瞬态负离子态的共振激发导致的。此外,还观察到La$^-$的几个束缚态到La的基态和激发态的光分离阈值。目前的结果提供了La$^-$的激发态结构和动力学信息,这些信息在很大程度上取决于多电子相关效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A liquid nitrogen-cooled Ca+ optical clock with systematic uncertainty of 3×10-18 In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses Laser spectroscopy of the 2S1/2 - 2P1/2, 2P3/2 transitions in stored and cooled relativistic C3+ ions High-Resolution Imaging of Cold Atoms through a Multimode Fiber Bistable optical transmission through arrays of atoms in free space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1