Synthesis and Characterization of Molecularly Imprinted Polymers for Quercetin

N. Verma, N. Trehan
{"title":"Synthesis and Characterization of Molecularly Imprinted Polymers for Quercetin","authors":"N. Verma, N. Trehan","doi":"10.4028/www.scientific.net/JBBTE.17.71","DOIUrl":null,"url":null,"abstract":"Quercetin is a flavonoid present in herbs, fruits and vegetables. It acts as an antioxidant, anticancer and anti-inflammatory agent. Molecularly Imprinted Polymers (MIPs) were prepared for quercetin by non-covalent approach in the presence of monomer acrylamide, EGDMA as the crosslinker, AIBN as the initiator and methanol and ethyl acetate as porogenic solvents. Most stable MIPs were synthesized using methanol as the solvent. Step wise removal of the template with methanol and acetic acid (9:1) left binding sites that retain complementary specificity and affinity. These stable MIPs were analysed by FT-IR technique. It was observed that there was hydrogen bonding between the template and the functional monomer. This study was further supported by NMR analysis for MIPs and NMIPs (control polymer) that cavity for quercetin has been created in MIPs and absent in the case of NMIPs. MIPs were characterized by SEM analysis that showed more clusters in case of MIPs than NMIPs as an effect of imprinting. These MIPs can be used for extraction of quercetin from herbs in a one step process.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"1 1","pages":"71 - 78"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.17.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Quercetin is a flavonoid present in herbs, fruits and vegetables. It acts as an antioxidant, anticancer and anti-inflammatory agent. Molecularly Imprinted Polymers (MIPs) were prepared for quercetin by non-covalent approach in the presence of monomer acrylamide, EGDMA as the crosslinker, AIBN as the initiator and methanol and ethyl acetate as porogenic solvents. Most stable MIPs were synthesized using methanol as the solvent. Step wise removal of the template with methanol and acetic acid (9:1) left binding sites that retain complementary specificity and affinity. These stable MIPs were analysed by FT-IR technique. It was observed that there was hydrogen bonding between the template and the functional monomer. This study was further supported by NMR analysis for MIPs and NMIPs (control polymer) that cavity for quercetin has been created in MIPs and absent in the case of NMIPs. MIPs were characterized by SEM analysis that showed more clusters in case of MIPs than NMIPs as an effect of imprinting. These MIPs can be used for extraction of quercetin from herbs in a one step process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
槲皮素分子印迹聚合物的合成与表征
槲皮素是一种类黄酮,存在于草药、水果和蔬菜中。它是一种抗氧化剂、抗癌剂和消炎剂。以单体丙烯酰胺为交联剂,EGDMA为引发剂,甲醇和乙酸乙酯为致孔溶剂,采用非共价法制备槲皮素分子印迹聚合物(MIPs)。以甲醇为溶剂合成了最稳定的mip。用甲醇和乙酸(9:1)逐步去除模板,留下的结合位点保留了互补的特异性和亲和力。用FT-IR技术对这些稳定的MIPs进行分析。观察到模板与功能单体之间存在氢键。对MIPs和NMIPs(对照聚合物)的核磁共振分析进一步支持了这一研究,在MIPs中产生了槲皮素的空腔,而在NMIPs中则没有。通过SEM分析发现,印迹作用下,MIPs比NMIPs的簇数更多。这些mip可用于一步法从草药中提取槲皮素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A biomechanical device for human sensorimotor function Programmable materials for mechanobiology Grasshopper Knee Joint - Torque Analysis of Actuators Using Ionic Polymer Metal Composites (IPMC) Effect of Unilateral Non-Rhythmical Stimulation on Bilateral Cerebral Cortex and Muscle Activation in People Strong and Bioactive Tri-Calcium Phosphate Scaffolds with Tube-Like Macropores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1