An Enhanced Differential Evolution through Memory Based Mechanism

Raghav Prasad Parouha
{"title":"An Enhanced Differential Evolution through Memory Based Mechanism","authors":"Raghav Prasad Parouha","doi":"10.1109/ICACAT.2018.8933676","DOIUrl":null,"url":null,"abstract":"This article is to presents an enhanced DE (differential evolution) through memory based mechanism of PSO (particle swarm optimization). Because of uses the memory concept of PSO, the proposed DE is termed as ‘MBDE (memory based differential evolution)’ where new mutation and crossover operators are introduced. This proposed technique is implemented on four typical benchmark functions available in literature. Experimental results prove that the proposed technique produce faster and more accurate solutions than classical DE, traditional PSO and PSODE (an effective hybrid variant of PSO and DE).","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is to presents an enhanced DE (differential evolution) through memory based mechanism of PSO (particle swarm optimization). Because of uses the memory concept of PSO, the proposed DE is termed as ‘MBDE (memory based differential evolution)’ where new mutation and crossover operators are introduced. This proposed technique is implemented on four typical benchmark functions available in literature. Experimental results prove that the proposed technique produce faster and more accurate solutions than classical DE, traditional PSO and PSODE (an effective hybrid variant of PSO and DE).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于记忆机制的增强差分进化
本文提出了一种基于记忆的粒子群优化机制的差分进化算法。由于使用了PSO的记忆概念,所提出的DE被称为“MBDE(基于记忆的差分进化)”,其中引入了新的突变和交叉算子。该技术在文献中提供的四个典型基准函数上实现。实验结果表明,与经典DE、传统PSO和PSODE(一种有效的PSO和DE的混合变体)相比,该方法能够更快、更准确地得到解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Metaphoric Investigation on Prediction of Heart Disease using Machine Learning Dynamic Weight Ranking algorithm using R-F score for Efficient Caching VLSI Architecture for Low Cost and Power Reversible Arithmetic Logic Unit based on Reversible Gate Advance Malware Analysis Using Static and Dynamic Methodology Evaluate Performance of student by using Normalized data set, Fuzzy and A-priori Like Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1